CaChannel

Geoff Savage
August 2000

A Python wrapper class around CaPython,
a Python interface to the EPICS channel access protocol.

CaChanne
TABLE OF CONTENTS

INTRODUCTION ... 3
PYTHON INTERPRETER EXAMPLE ... 3
CACHANNEL EXAMPLEScoooeeeieieitittettttetteeeateeetssassssssssssssssssssssssassssssssssssssssssssssssssssssssssssssrnes 4
CHANNEL A C CESS BASICSoeiiieiiiiieeettttetteeeessssaseasssssesseseesseseeessreeeeseresssesereeerrrer......—————. 4
4.1 (@Y7 V1 =Y N 4
4.2 L 1= I D I = =S T 5
4.3 I = Y 1= N 1O =TT 5
4.4 (0] IS T 6
45 (O N I I =YX 0! TN 6
451 ConnECtion CAlIDACKoooeeieeeeeee 6
45.2 [0 o= 11] 7= 1o 6
45.3 (1 o1 7= Tox 6
4531 [= 1 7
A.5.3.2 SHBIUS. ..o e e e et e et ee et et e ettt ettt ettt et ettt et ettt et et et et et et et et en et enen e e enenennnenen 7
45.3.3 B L (T 7
R I A € "o oo TR 7

E ST TS T ©0 011 (o IR 7
45.4 MONITOT CAIIDACK ... 7
4.6 FILE DESCRIPTOR MANAGER. .. .uutiiiititttti s e eeeteettts s s eesssessab s seessssssbbaseessseasbbasseessensbbaassesasees 8
CACHANNEL CL ASS . ..coeettetitetteteteeeeeeeeeeeaeteeeaeesssessassessssssssessesssnnes 8
51 AT 8
511 SEAICNW....cco i 8
51.2 PULVV ... b e e e e a e rae e 8
513 GBIV e e e 9
52 (000N |0 1) N 9
521 SEArCN_ANA_COMNECTeetiitieitee sttt bttt nae s san e snns 9
522 SBAICN . 10
523 ClEAr _ChaNNEL ...t 10
53 RV o = 10
531 oL =\ 01U TP 10
53.2 array_Put_CallbacK............ooiiiii 11
54 (=Y 0 TR 11
54.1 oL =\ o[TP 11
54.2 (01 AV 11 TSRS 11
543 array gt CAlIDACK.coeiieieie e 12
55 = o U T N TR 12
551 872070 [o B OO OO PP UUPOUPOPPOPRVIN 12
55.2 8= 010 =Y o | PP P PP RPROURRPRRPRRIN 13
5.5.3 oo RO SU USRS 13
55.4 L85 o o T TS 13
555 01 W T =0 LU RSP RSTR 13
5.5.6 LS 0= 0L | R 14
5.6 1Y o N I @] =T N T 14
56.1 add_mMAsked @rray EVENEcoieeiieiierie ettt 14
5.6.2 CHEAN _BVENL......ceeeee ettt b et b e s b e e b e b e b e be e nne e nne s 15
57 = JR TR 15
57.1 L= o TN o= PP RSR 15
5.7.2 EIEIMBNT_COUNL ...ttt n et r e e e 15
573 (7= 1 0= TR 15
574 LS = | RN 16
575 NOSE NAIME. ...ttt b e b bbb e b e b nre e sae e sreenree 16
5.7.6 FEAO BIOCESS. ... e euteeuteeteesteesteesteesteesbeesbee s b e e abeesbeesbeeaheeaheesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesrnens 16
5.7.7 WWETEE BICCESS. ...ttt ettt ettt ettt ettt e b e bbbttt b e et e bt e bt et e e bt e bt e be e bt e bt e bt enreens 16

CaChannd

1 Introduction

CaChannel wraps the functions in caPython into a Python class for easier use. CaPython
is a Python module that implements the EPICS channel access (CA) communications
protocol. CaChannel makes EPICS CA object oriented, with some limitations.

» For increased efficiency CA can accumulate many actions (connects, reads,
writes) together into one message. Actions from many objects can be
accumulated and sent with a method from any CaChannel object. In typical
object oriented programming having a method in one object impact other objects
is frowned upon.

» All the functions and constants needed for efficient use of CA are not included as
methods in the CaChannel class. Instead they are included in CaPython and are
accessed in the ca name space.

This documentation covers:
» The CaChannd class.
» Enough EPICS channel accessto start using CaChannel.
» Basics of CaPython with references to more detailed information in the CaPython
documentation as needed.

All the details of EPICS channel access are available in:
 “EPICS R3.12 Channel Access Reference Manual’
* “Channel Access Client Library Tutorial, R3.13"
* EPICS header files: cadef.h, db_access.h, and caerr.h.

2 Python Interpreter Example

Here’s how to use CaChannel from the python interpreter. This technique is often used
for quick debugging. Given an EPICS record name you can access the records fields.

> pyt hon

Python 1.5.2 (#6, May 10 1999, 21:44:32) [C] on osflV4
Copyright 1991-1995 Stichting Mathemati sch Centrum Anst er dam
>>> from CaChannel inport *

>>> ch = CaChannel ()

>>> ch. searchw(’ catest’)

>>> ch. put w(123)

>>> ch. getw()

123.0

>>> del ch

The first step is accessing the CaChannel module. The python command to do this is:
from CaChannel inport *

This statement imports:

« CaChannel — the CaChannel class

« CaChannelException — the CaChannel exception object
« ca—the caPython module.

Create a new CaChannel() object.
ch = CaChannel ()

Connect to channel ‘catest’. The VAL field of the catest record is assumed.
3

CaChannel
ch. searchw(’ catest’)

Write the value 123 to channel ‘catest’.
ch. put w(123)

Read a value from ‘catest’.
ch. getw()

Each of the actions (search, put, get) ending with a “w” signifies that the action
completes before the function returns. In CA terms this means that a call to ca_pend_io()
is issued to force the action to process and wait for the action to complete.

The last step is to close the channels that you are no longer using. This is done

automatically when the channel object is deleted. An object created by:
obj = CaChannel ()

is deleted by:
del obj

The wait functions also raise exceptions on CA errors. See ca_wait.py for an example of
using these functions in a Python script.

3 CaChannel Examples

These examples are included with the CaChannel distribution. The EPICS records used
in these examples are included in the file test_records.db. Examples for single element
and multiple element data transfers are provided.

« Single synchronous actions (ca_wait.py)— One action (search, get, put) at a time is
executed and the results of each action returned to the user before the next action is
processed.

« Multiple synchronous actions (ca_io.py)— Multiple actions are combined into one
message. The user must specify when the message is sent for processing and wait for
the processing to complete. The results of all the actions are returned to the user.

« Asynchronous actions (ca_ch.py)— Wait for no actions to complete. Instead, flush the
actions to be processed and execute a user specified callback routine when the action
has completed.

« Asynchronous events (ca_event.py) — Execute a user specified callback routine when
a monitored event occurs in a server.

4 Channel Access Basics

EPICS channel access (CA) is the communication protocol used to transfer information
between EPICS servers and clients.

4.1 Overview

Channel access provides access to process variables (PV) that are accessible from EPICS

channel access servers. Process variables are fields in EPICS records. Interactions with

the process variable include:

1. Connect — create a connection between your application and a process variable. This
must be done before any other communication with the PV.

4

CaChannel
Read — read data held in the process variable.
Write — write data to the process variable.
Monitor — notification when a PVs value or alarm state changes.
Close — close the connection between an application and a process variable.

4.2 Field types

Each field in an EPICS record has a native EPICS type. The native types are listed in the
following table along with the C type to which they correspond.

arwD

Native Type Request Type C Type Python Type
ca.DBF_STRING ca.DBR_STRING array of char String
ca.DBF_CHAR ca.DBR_CHAR char Integer
ca.DBF_ENUM ca.DBR_ENUM int Integer
ca.DBF_SHORT ca.DBR_SHORT short (16 bits) Integer
ca.DBF_INT ca.DBR_INT short (16 bits) Integer
ca.DBF_LONG ca.DBR_LONG int (32 bits) Integer
ca.DBF_FLOAT ca.DBR_FLOAT float Float
ca.DBF_DOUBLE | ca.DBR_DOUBLE| double Float

This table also lists the EPICS request types. Users can request that the type of the read
or write value be changed internally by EPICS. Typically this adds a time penalty and is
not recommended.

The one area where type conversion is extremely useful is dealing with fields of type
ca.DBF_ENUM. An ENUM value can only be one from a predefined list. A list consists
of a set of string values that correspond to the ENUM values (similar to the C enum
type). It is easier to remember the list in terms of the strings instead of the numbers
corresponding to each string.

The native type of a channel is obtained using tleé¢d_t ype() method.
chan = caChannel ()
chan.searchw(‘pvname’)
fieldType =chan.field_type()

Convert the field type to a string using either the dbf_text() or dbr_text() methods.
print ca.dbf_text(fieldType)
print ca.dbr_text(fieldType)

4.3 Element counts

Each data field can contain one or more data elements. The number of data elementsis
referred to as the native element count for afield. The number of data elements written
to or read from a data field with multiple elementsis user controllable. All or some data
elements can be read. When some data elements are accessed the access is dways started
at the first element. It is not possible to read part of the data and then read the rest of the
data.

The native element count for a channel is determined using the element_count()

method.
chan = caChannel()
chan.searchw(‘pvname’)

CaChannel
el enent Count = chan. el enent _count ()

4.4 Errors

All CA errors are converted to exceptions that also provide access to the CA status.
try:

(Execute CA calls here)

except CaChannel Excepti on, status:
print ca.message(status)

The different status values are accessed through ca ECA_XXXX values and correspond
to the value returned from the underlying CA C function.

4.5 Callbacks

Callbacks come in four types:

« Connection

« Put

« Get

« Monitor (event)

When the requested action completes a user specified function is executed. In each case,
a callback function must have two arguments. If two arguments are not specified then the
callback will not work.

« epics_args— arguments returned from epics.

« user_args — arguments specified by the user for use in the callback function.
User_args are returned as a tuple. It is the users responsibility to understand how to
access user_args. Accessing values in epics_args is explained in the CaPython
documentation.

45.1 Connection callback

To get a callback when a connection request has completed use:
chan. sear ch_and_connect (' pvhame’, connect Cb)

See ca_ch.py for an example of a connection callback function and the CaPython
documentation for an explanation of the contents of epics_args.

4.5.2 Put callback

To get a callback when a put request has completed use:
chan. array_put _cal | back(’ pvhame’, connect Ch)

See ca_cbh.py for an example of a put callback function and the CaPython documentation
for an explanation of the contents of epics_args.

45.3 Get callback

Get callbacks come in a variety of flavors:

« Original —returns the value(s) requested.

« Status - return the value(s) requested and the alarm status and severity.

« Time — add the time stamp of the PV to the values returned by Status.

« Graphics — return the value(s) requested, alarm status and severity, engineering units,
upper and lower displdynits, and the alarm limits.

« Control — add the control limits to the values returned by Graphics.

6

CaChannel
Use the cadbf_type to DBR_XXXX functions in the CaPython module to convert from
the caDBR_XXXX request typesto the different types listed above.

4.5.3.1 Plain
To get acallback when a get request has completed use:

chan. array_get cal | back(ca. DBR_XXXX, count, getCb, *user_args)
See ca_ch.py for an example of a get callback function and the CaPython documentation
for an explanation of the contents of epics _args.

45.3.2 Status

To get acallback when a get request has completed use:
chan. array_get cal | back(ca. dbf _type_to_DBR STS(ca. DBR_XXXX),
count, getCbh, *user_args)

See ca_ch.py for an example of aget callback function and the CaPython documentation
for an explanation of the contents of epics_args.

45.3.3 Time

To get acallback when a get request has completed use:
chan. array_get _cal | back(ca. dbf _type_t o_DBR_TI ME(ca. DBR_XXXX) ,
count, getCh, *user_args)

See ca_ch.py for an example of a get callback function and the CaPython documentation
for an explanation of the contents of epics _args.

4.5.3.4 Graphic

To get acallback when a get request has completed use:
chan. array_get cal | back(ca. dbf _type to_DBR GR(ca. DBR_XXXX), count,
get Cb, *user_args)

See ca_ch.py for an example of a get callback function and the CaPython documentation
for an explanation of the contents of epics _args.

4.5.3.5 Control

To get acallback when a get request has completed use:
chan. array_get cal | back(ca. dbf_type_to_DBR CTRL(ca. DBR_XXXX),
count, getCh, *user_args)

See ca_ch.py for an example of a get callback function and the CaPython documentation
for an explanation of the contents of epics _args.

4.5.4 Monitor callback

EPICS can monitor PVsfor three types of events:

1. When the value changes by more than the monitor dead band.

2. When the value changes by more than the archiver dead band.

3. When the darm status of the PV changes.

When a monitor detects the condition selected condition a callback is executed. The

values returned in the callback match those of the get callbacks depending on the

database request type. The monitoring conditions are specified by or’ing the following
values.

Monitor Mask Description

ca.DBE_VALUE when the channel's value changes by more than MDEL
ca.DBE_LOG when the channel’'s value changes by more than ADEL
ca.DBE_ALARM when the channel's alarm state changes

CaChannd

Use add _masked array_event to register the monitor:
chan. add_nmasked_array_event (req_type, count, mask, call back,
*user _args)

4.6 File Descriptor Manager

Information on using the file descriptor manager is found in the CaPython documentation
and ca_event.py gives and example of its use.

5 CaChannel Class

The CaChannel methods can be categorized by functionality.
» Wait — simple connect, read, and write methods
» Connect — create and delete connections to EPICS process variables
» Write — insert data in a PV
* Read - retrieve data from a PV
» Execution — send message filled with requests (connect ,read, write, ...)
» Monitor — notification of PV conditions
* Info — information on the connection and PV
Remember that errors are reported through the Python exception mechanism.

5.1 Wait

Each CaChannel wait method makes a channel access function call followed by a call to
ca.pend_io(). The effect is that each action, search, put, and get, is instructed to execute
individually. The call to pend_io() halts program execution and waits for the action to
complete or the wait times out. This technique is extremely slow.

These methods are designed to be used in simple applications and provide novice users
with a simple set of methods to use while becoming acquainted with channel access.

5.1.1 searchw

Synopsis
chan.searchw(‘pvName’)

Arguments
pvName (string): process variable to connect to

Description
Attempt to establish and maintain a virtual circuit between the caller’s
application and a process variable.

Comments
Find and open a connection to a process variable

5.1.2 putw

Synopsis
chan.putw(value, [req_type])
Arguments
Value — value(s) to be sent
req_type — database request type for write (ca.DBR_XXXX)
8

CaChannel
Description
Write avalue or array of valuesto a channel.

Comments
If the request type is omitted the data is written as the Python type
corresponding to the native format. Multi-element data is specified as a
tuple or alist. Internaly the sequence is converted to alist before
inserting the valuesinto a C array. Access using non-numerical typesis
restricted to the first element in the datafield. Mixing character types with
numerical types writes bogus results but is not prohibited at this time.
DBF_ENUM fields can be written using DBR_ENUM and
DBR_STRING types. DBR_STRING writes of afield of type
DBF_ENUM must be accompanied by a valid string out of the possible
enumerated values.

5.1.3 getw

Synopsis
Vaue = chan.getw([req_type])

Arguments
Req_type (optional) — database request type for read

Returns
Value — value(s) read

Description
Read a value or array of values from a channel.

Comments

If the request type is omitted the data is returned to the user as the Python
type corresponding to the native format. Multi-element data has all the
elements returned as items in a list and must be accessed using a
numerical type. Access using non-numerical types is restricted to the first
element in the data field. DBF_ENUM fields can be read using
DBR_ENUM and DBR_STRING types. DBR_STRING reads of a field

of type DBF_ENUM returns the string corresponding to the current
enumerated value.

5.2 Connection

Methods that create and delete connections with process variables.

5.2.1 search_and_connect

Synopsis
chan.search_and_connect(‘pvName’, callback, *user_args)
Arguments
pvName (string): process variable to connect to
callback (function): function called when the connection request
completes

*user_args: variable number of user arguments that are passed to callback

when it is invoked

CaChannel
Description
Attempt to establish and maintain a virtual circuit between the caller’s
application and a process variable.

Comments
The user arguments are returned to the user in a tuple in the callback
function. The order of the arguments is preserved.

5.2.2 search

Synopsis
chan.search(‘pvName’)

Arguments
pvName (string): process variable to connect to

Description
Attempt to establish and maintain a virtual circuit between the caller’s
application and a process variable.

Comments
None

5.2.3 clear_channel

Synopsis
chan.clear_channel()

Arguments
None

Description
Close a channel created $1ar ch() orsear ch_and_connect ().

Comments
Clearing a channel does not cause it's disconnect handler to be called.
Clearing a channel does remove any events (monitors) registered for that
channel. If the channel is currently connected then resources are freed
only some time after this request is flushed out to the server.

5.3 Write

Write data to process variables.

5.3.1 array_put

Synopsis
chan.array_put(value, [req_type], [count])

Arguments
value: data to be written. For multiple values use a list or tuple.
req_type (int, optional): database request type, must be compatible with
the data type of value. Defaults to the native data type for the channel.
count (int, optional): number of data values to write. Defaults to the
native count for the channel.

10

CaChannel
Description
Write avalue or array of valuesto a channel.

Comments
None

5.3.2 array_put_callback

Synopsis
chan.array_put_callback(value, req_type, count, callback, *user_args)
Arguments
value: datato be written. For multiple values, use alist or tuple.
reg_type (int): database request type, must be compatible with the data
type of value.
count (int): number of data valuesto write.
calback (function): function called when the write is completed
*user_args (any python types, optional): variable number of user
arguments that are passed to callback when it isinvoked

Description
Write avalue or array of values to a channel and execute the user-supplied
callback after the put has completed.

Comments
If the value of None is specified for req_type or count then the default
value for the channel is used.

5.4 Read

Read data from process variables.

5.4.1 array_get

Synopsis
chan.array_get([req_type], [count])

Arguments
req_type (int, optional): database request type, must be compatible with
the data type of value. Defaults to the native data type for the channel.
count (int, optional): number of data valuesto write. Defaultsto the
native count for the channel.

Description
Read avalue or array of values from a channel.

Comments
Once the get has been completed (after the successful completion of a
pend_io()), the datais retrieved by a call to the getVaue method.

val = chan. get Val ue()

5.4.2 getValue

Synopsis
val = chan.getValug()

11

CaChannd
Arguments
None

Comments
Used to retrieve values read from a PV after aread has completed
successfully. See array_get().

5.4.3 array_get_callback

Synopsis
chan.array_get_callback(req_type, count, calback, *user_args)
Arguments
reg_type (int): database request type, must be compatible with the data
type of value.
count (int): number of data valuesto write.
calback (function): function called when the write is completed
*user_args: variable number of user arguments that are passed to callback
when it isinvoked

Description
Read a value or array of values from a channel and execute the user-
supplied callback after the get has completed.

Comments
If the value of None is specified for req_type or count then the default
value for the channel is used.

5.5 Execution

CA actions are buffered until the buffer is full or one of these methods is executed at
which time the actions in the buffer are sent in a message for execution.

55.1 pend._io

Synopsis
chan.pend_io([timeout])

Arguments
timeout (float, optional, seconds) — length of time to wait for calls to
complete

Description
Flush the send buffer and wait until outstanding queries complete or the
specified timeout expires.

Comments
There are three possible timeouts that can be used. If a timeout is
specified as an argument it is used. If there is no timeout argument then
the class timeout CaChannel.ca_timeout is used. This allows users to
change the timeout for all objects of type CaChannel. The default class
timeout is one second. Each CaChannel object can have it's own default
timeout controlled by the setTimeout() and getTimeout() methods. If the
objects timeout is set then it is used before the class timeout.

12

CaChannel
5.5.2 pend_event

Synopsis
chan.pend_event([timeout])

Arguments
timeout (float, optional) — length of time to wait for calls to complete

Description
Flush the send buffer and wait for asynchronous events for timeout
seconds.

Comments
There are three possible timeouts that can be used. If a timeout is
specified as an argument it is used. If there is no timeout argument then
the class timeout CaChannel.ca_timeout is used. This allows users to
change the timeout for all objects of type CaChannel. The default class
timeout is one second. Each CaChannel object can have it's own default
timeout controlled by the setTimeout() and getTimeout() methods. If the
objects timeout is set then it is used before the class timeout.

5.5.3 poll

Synopsis
chan.poll()

Arguments
None

Description
Calls pend_event() with a timeout short enough to poll.

Comments
Outstanding channel access background activity executes during the poll.

5.5.4 flush_io

Synopsis
chan.flush_io()

Arguments
None

Description
Flush the send buffer.

Comments
Does not pause to allow CA activity.

5.5.5 getTimeout

Synopsis
timeout = chan.getTimeout()

Arguments
None

13

CaChannel
Comments
Retrieve the timeout set for this object. If set it overrides the class
timeout.

Returns
timeout (Float): value of the current default timeout.

5.5.6 setTimeout

Synopsis
chan.set Timeout(timeout)

Arguments
timeout (float): new default timeout value

Comments
Set the timeout for this object. When set it overrides the class timeout.

Exceptions
ValueError — timeout must be greater than or equal to O (wait forever)

5.6 Monitoring

Receive notification of changes to a PV.

5.6.1 add_masked array event

Synopsis
chan.add_masked_array_event(req_type, count, mask, callback,
*user_args)

Arguments

req_type (int): database request type, must be compatible with the data

type of value.

count (int): number of data values to write.

mask (int): logical or of ca.DBE_VALUE, ca.DBE_LOG, or
ca.DBE_ALARM

callback (function): function called when the write is completed

*user_args: variable number of user arguments that are passed to callback

when it is invoked
Description

Specify a callback function to be executed whenever changes occur to a

PV.

Comments

Only one callback at a time can be registered for monitoring on a channel.

Any callback currently registered is replaced by a new callback. If the

value of None is specified for req_type or count then the default value for
the channel is used. See the discussion of the monitor callback for more

information on the mask argument.

14

CaChannel
5.6.2 clear_event

Synopsis
chan.clear_event()

Arguments
None

Description
Remove a callback function that is executed whenever monitored changes
occur to aPV.

Comments
None.

5.7 Info

These methods return information about the channel.

5.7.1 field _type

Synopsis
FieldType = chan.field_typeg()

Arguments
None

Comments
None

Returns
fieldType (int) — native field type (ca.DBF_XXXX)

5.7.2 element_count

Synopsis
ec = chan.element_count()

Arguments
None

Comments
None

Returns
ec (int) — native element count

5.7.3 name

Synopsis
pvName = chan.name()

Arguments
None

Comments
None

15

CaChannd

Returns
pvName (string) — channel name specified when the channel was
connected
5.7.4 state
Synopsis
state = chan.state()
Arguments
None
Comments

Possible channel states.
ca.cs_never_conn PV not found

ca.cs_prev_conn PV was found, but unavailable
ca.cs_conn PV was found, and is available
ca.cs_closed invalid channel

Returns

state (int) — current state of the connection

5.7.5 host_name

Synopsis
hostName = chan.host_name()

Arguments
None

Comments
None

Returns
hostName (string) — host name that houses the process variable

5.7.6 read_access

Synopsis
access = chan.read_access()

Arguments
None

Comments
None

Returns
access (int) — TRUE if channel can be read, FALSE otherwise

5.7.7 write_access

Synopsis
access = chan.write_access()

16

CaChannd
Arguments
None

Comments
None

Returns
access (int) — TRUE if channel can be written, FALSE otherwise

17

