Online Calibration System

T. Yasuda
Fermailab

April 12, 2002

1 Introduction

Periodic calibration of the sub-detector systems is one of the most important tasks during
the data taking run. In the D Run II, most sub-detector systems will take special data
during the quiet time between stores for calibration, collecting pedestals or measuring
gains by injecting electronic charges to the front-end amplifiers. These data are analysed
online in the front-end processors in the case of SMT, or in the Level 3 nodes in the
case of Calorimeter, or analysed offline in the cases of CF'T, CPS, and FPS, which uses a
common readout system, and the muon systems. The calibration constants are inserted
into the online ORACLE database. These constants will be transfered from the online
database to the offline database for later use in the data analysis.

The online calibration runs will be coordinated by a set of software programs, each
representing a different aspect of the task, with coor controling the overall running of the
DAQ system and the calibration manager (Calib_Manager) overseeing the data transfer
from the calibration data processor to the calibration database. Calib_Manager and the
database interface have been developed as common tools for all sub-detectors and run
with the standard elements of the data acquistion (DAQ) system, such as coor, comics,
Collector/Router. comics is the common tool for the download to elements of the DAQ
system, such as the front-end crates. The Collector/Router selectively sends the special
event data from the front-end processors or from the level 3 nodes to the Calib_Manager.

When a calibration run is about to begin, the Calib_Manager receives a series of com-
mands from coor and prepares itself for the run. Once the run starts, the Calib_Manager
takes over the process. After a front-end processor or a 1.3 node collects a sufficient num-
ber of events, it calculates the calibration parameters, such as pedestals and gains, and
sends them to the Calib_Manager as a special Event Message. The calibration runs for
individual crates take place in parallel. The Calib_Manager checks if it has received data
for all of the front-end crates and therefore the calibration run is completed. After receiv-
ing data for all of the crates, the Calib_Manager sends a “force_stop” message to coor.
Upon receiving this message, coor will stop the run and frees the resources allocated for
the calibration run. The Calib_Manager forwards the data received from the calibration



data processor in a front-end or a level 3 node to the Validation process (Validator) for
validation and for database insertion.

Communication between the processes is based on a mechanism implemented in the
ITC client-server package. The Calib_Manager is an ITC server. The calibration data
processors in the front-end, Validator, coor and the graphical user interface for the
Calib_Manager (Calib_Manager GUI) are ITC clients. The results of the calibration are
transported as a special Event Message with a stream id assigned by coor.

The Calib_Manager is a c++ program and contains an ITC server, an ITC Message
processor and an Online_Calibration object. The Online_Calibration object holds
all the information about the subsystem calibration in the form of Subsystem Onl_-
Calibration object as a data member. Since there are more than one detector subsys-
tems, the object is stored as an std vector. Each Subsystem Onl Calibration object
holds the status of data processing, the status of validation, and the status of database
commit for each crate as std vectors. It also contains data on the results of calibration
and a summary of the validation for each crate. The states of these objects are set directly
or indirectly by receiving messages or data from the front-end processes or the validation
process.

The Validator acts as an interface to the calibration database and is written in
Python. It receives data from the Calib_Manager and compares them to the reference
set obtained from the database and inserts them to the database. The Validator for
a detector subsystem is started by the Calib_Manager after a “start_run” command is
received from coor. The Validaor is a client to the Calib_Manager. After establishing
a connection to the Calib_Manager, it sends a request for a list of crates that are being
calibrated so that the reference set can be retrieved from the calibration database while
the calibration run is in progress. The Calib_Manager forwards data from the calibration
data processor to the Validator one crate at a time, and receives the summary of the
result of comparison from the Validator. The Calib_Manager keeps track of the crates
that are calibrated. The Validator also performs database commit.

The Calib_Manager and the Validator are maintained as a dcvs package onl_-
calib_system. The low level database access is based on the dcvs package onl_calDbAccess.

2 Steps of Online Calibration

This section describes the sequence of a typical online calibration run to demonstrate how
the process works.
1. Initialization of Calib_Manager

The Calib_Manager starts out by creating an ITC processor and an ITC server.
An Online_Calibration object is created with the processor.

A connection to Collector/Router is made at this point so that data can be
received from it with stream ids assigned dynamically by coor.

After this, the Calib_Manager goes into a wait loop.



. coor communication for a calibration run

In most cases, coor has to connect to the Calib_Manager as a client to send the
calibration run information. The Calib_Manager in turn connects to coor as a client
to be able to send “force_stop” run message to coor when all the calibration data
are collected.

coor sends a series of messages describing the calibration configuration to the
Calib_Manager at the beginning of a calibration run. Upon receiving these mes-
sages, Subsystem Onl Calibration object is created in the Online _Calibration
object to receive data from the front-end processes or the L3 nodes.

. Initialization of Subsystem Onl_Calibration object

The status of Subsystem Onl Calibration is set to READY FOR_RUN, when it is
created. The processing status is set to C_READY_FOR_RUN for each crate. The
validation status is set to C_READY_FOR_VALIDATION for each crate if the validation
is requested. If not, it is set to C_UNKNOWN_VLDT_STATE. The commit status is set to
C_UNKNOWN_COMMIT_STATE for each crate.

Upon receiving a “start_run” command from coor, the status of Subsystem Onl_-
Calibration is set to RUN_IN_PROGRESS and the processing status is set to C_RUN_-
IN_PROGRESS for each crate.

. Receiving data

Upon receiving the results of calibration, the processing status is set to C_RUN_-
FINISHED for the crate. It is also checked if the data from all of the crates are
received or not. If all of the crates have sent data, the status is set to RUN_FINISHED,
—end_calib time is set and Calib_Manager sends a “force_stop” command to coor
to stop the run.

. Initialization of Validator

In the meantime, the Validator is started by Calib_Manager, after receiving a
“start_run” command from coor.

The Validator creates a Subsystem_Validation object and connects to the Calib_-
Manager as a client.

The Validator asks the status of Subsystem Onl_Calibration object to the Calib_-
Manager by sending a VALIDATION_INQUIRY message. It keeps sending this message
until the Subsystem Onl Calibration object is ready for validation or database
commit.

. Preparation for validation in Calib_Manager

Upon receiving a VALIDATION_INQUIRY message, the status of the Subsystem Onl_-
Calibration object is set to READY_FOR_VALIDATIOQN, if validation is requested by
a coor message and if the status is RUN_FINISHED. The list of crate is sent to the



validation process as a START_VALIDATION message, if the status is RUN_IN_PROGRESS
or RUN_FINISHED.

If validation is not requested, the status of Subsystem Onl Calibration is set to
READY FOR_COMMIT and the status of each crate is set to C_READY_FOR_COMMIT.

7. Data request by Validator

The status of the Subsystem_Validation object in the Validator becomes READY_~
FOR_VALIDATION, when a START _VALIDATION message is received, regardless of the
readiness of Subsystem_Onl_Calibration object in the Calib_Manager. When
the status of the Subsystem_Validation object becomes READY FOR_VALIDATION
or READY FOR_COMMIT, and it is not in the state of VALIDATION_FINISHED, nor
C_VALIDATION_IN_PROGRESS, the Validator sends a DATA REQUEST message to the
Calib_Manager, if validation is requested.

If validation is not requested, the status of the Subsystem Validation object
is immediately set to READY_FOR_COMMIT and a DATA_REQUEST message is sent to
the Calib_Manager, until the status of the Subsystem_Validation object becomes
COMMIT_FINISHED.

8. Data transfer for validation

Upon receiving a DATA_REQUEST message, the Online_Calibration object sets the
status of the Subsystem Onl Calibration object to READY FOR_VALIDATION and
sends back the processed data to the Validator, if the status is RUN_FINISHED.

If the status of the Subsystem_Onl _Calibration object is READY_FOR_VALIDATION
or VALIDATION_IN_PROGRESS, it sends back the processed data to the Validator.

If the status of the Subsystem Onl_Calibration object is VALIDATION_FINISHED,
it sends back a status message with VALIDATION_FINISHED.
9. Data transfer for database commit

If the status of the Subsystem_Onl Calibration object is READY_FOR_COMMIT or
COMMIT_IN_PROGRESS, it sends back the processed data to the Validator.

If the status of the Subsystem Onl _Calibration object is COMMIT FINISHED, it
sends back a status message with COMMIT_FINISHED and marks the object for dele-
tion.

3 Use Cases

This section describes the use cases for the subprocesses that participate in the online
calibration.



3.1 Taker

3.2

3.3

Select calibration configuration

A DAQ shifter selects a sub-detector, a configuration of readout crates, and a mode
of calibration and requests downloads to COMICS through coor. In this process,
calibration data processors on Level 3 nodes or on the front-end processors should
also be started.

Start calibration run

When a calibration run request is processed without problems, the DAQ shifter
starts the calibration run by requesting coor to start a run.

coor

Connect to Calibration Manager

coor connects to Calib_Manager.

Send the run configuration to Calibration Manager

coor sends a run configuration selected by the shifter to Calib_Manager, e.g., a
sub-detector, a list of crates, and a calibration type, etc.

Send the start run message to Calibration Manager

coor sends a start of run message to Calib_Manager.

Stop calibration run

A DAQ shifter can stop (abort) a calibration run by sending a force_stop message
to coor from Calib_Manager.

Calibration Manager

Start Calibration Manager

Calib_Manager is started when the DAQ system is started. This is a server process
and waits for connection requests from sub-processes.

Accept the connection request from Calibration Manager GUI

Calib_Manager accepts connection requests from Calib_Manager GUI.

Accept the connection request from coor

Calib_Manager accepts a connection request from coor.

Connect to coor

Calib_Manager connects to coor to be able to send “force_stop” run message.



Connect to Collector/Router

Calib_Manager connects to Collector/Router, from which the results of Calibration
are received in the form of an event message.

Configure a Calibration process

Creates a Subsystem Onl Calibration object if it does not already exist or re-
initialize the Subsystem_Onl_Calibration object if it does.

Abort a Calibration process

Delete the Validator process and re-initialize Subsystem Onl_Calibration object.

Start Validation process

Calib_Manager starts a Validation process when a start_run command is received
from coor. The Validation process in turn connects to Calib_Manager.

Receive data from Calibration Data Processor

Calib_Manager receives data from Calibration Data Processors via Collector /Router
in the form of the Event message.

Send data to Validation process

Calib_Manager sends data to Validator, if it is ready to accept data.

Receive the status report from Validation process

Calib_Manager receives status reports from Validator, e.g., whether it has read a
reference set from the database and is ready to accept data, etc.

Receive the request for the status from Calibration Manager GUI

Calib_Manager receives requests for the status report from Calib_Manager GUI.

Send the status report to Calibration Manager GUI

Calib_Manager sends status reports to Calib_Manager GUI.

Receive action commands for database transaction from Calibration Manager GUI

Calib_Manager receives action commands for database transaction from Calib_Manager_GUI.

Forwards action commands for database transaction to Validation process
Calib_Manager forwards action commands for database transaction to Validation
process.

Receive summary reports from Validation process

Calib_Manager receives summary reports from Validation process.



3.4

3.5

3.6

Save summary of calibration task

Calib_Manager saves the summary of the calibration task to a file (or sends it to a
logger).

Calibration Manager GUI

Connect to Calibration Manager

Calib_Manager_GUI connects to Calib_Manager.

Request the status report to Calibration Manager

Calib_Manager_GUI requests the status report to Calib_Manager.

Receive the status report from Calibration Manager

Calib_Manager sends the status report to Calib_Manager_GUI upon request.

Send action command to Calibration Manager

A DAQ shifter makes a decision on whether to commit the new results to the
database or not and sends a command to Validator thorough Calib_Manager.
Stop calibration run

When the Calib_Manager receives the data from all of the crates, the Calib_Manager
sends a request to stop the run to coor. Also the DAQ shifter can stop (abort) a
calibration run by sending a message to coor via Calib_Manager.

Abort calibration process

Send an Abort command to Calib_Manager.

Calibration Data Processor

Start Calibration Data Processor

Calibration Data Processors are started by a coor command or a COMICS download
to the front-end processors.

Send data to Collector/Router

A Calibration Data Processor sends data that contains the results of the calibration
data processing, e.g., pedestals and gains, to Collector/Router.
Validation Process

Connects to Calibration Manager

Validator connects to Calib_Manager.



e Send status report to Calibration Manager

Validator sends status reports to Calib_Manager, e.g., reading the reference data
set, not ready for data, ready for data, validation in progress, etc.

e Receive data from Calibration Manager

Validator receives data from Calib_Manager.

e Retrieve the reference set of the calibration constants from the database

Validator retrieves the reference set of the calibration constants from the database.

e Perform comparison between the measured and the reference calibration constants

Validator performs comparison between the measured and the reference calibration
constants.

e Send summary report to Calibration Manager

Validator sends a summary report of the validation to Calib_Manager.

e Receive action command from Calibration Manager

Validator receives action commands for database transaction from Calib_Manager.

e Insert the new calibration results to database

Validator inserts the new calibration results to the database.

4 States of objects

This section describes possible states in which the objects used in the calibration process
are in.
4.1 Subsystem Onl Calibration object

The Subsystem_Onl_Calibration object can be in the following states:

e UNKOWN
Not used.

e READY FOR_RUN

Set in the constructor.

e RUN_IN_PROGRESS

Set in COOR_Message_Handler upon receiving a coor command “start_run”, or set
in add_subsystem method when it is called by a Calib_Manager_GUI message.



RUN_FINISHED

Set in set_proc_data method upon receiving a data (an event) message that com-
pletes the data set requested.

RUN_ABORTED

Not used.

READY_FOR_VALIDATION

Set in DB_Interface_Message_Handler, when a DATA_REQUEST command is received
and the status is RUN_FINISHED, or set in set_validation_status method, when a
VALIDATION_STATUS message is received, or set in send_vldt_crates method, when
a VALIDATION_INQUIRY message is received and the status is RUN_FINISHED.
VALIDATION_IN_PROGRESS

Set in set_validation_status method, when a VALIDATION_STATUS message is
received.

VALIDATION_FINISHED

Set in set_validation_status method, when a VALIDATION_STATUS message is
received and all of the crates are validated.

VALIDATION_ABORTED

Not used.

READY_FOR_COMMIT

Set in start_db_commit method, when a START_COMMIT message is received, or set
in set_commit_status method, when a COMMIT_STATUS message is received and all
of the crates are in C_READY_FOR_COMMIT.

COMMIT_IN_PROGRESS

Set in set_commit_status method, when a COMMIT_STATUS message is received and
at least one of the crates is in COMMIT_IN_PROGRESS.

COMMIT_FINISHED

Set in set_commit_status method, when a COMMIT_STATUS message is received and
all of the crates are in C_.COMMIT_FINISHED.

COMMIT_ABORTED

Not used.



4.2 Subsystem Proc_Status object

The Subsystem_Proc_Status object can be in the following states:

e C_UNKOWN_PROC_STATE
Not used.

e C_READY_FOR_RUN

Set to this, when a Subsystem_Proc_Status object is created.

e C_RUN_IN_PROGRESS

Currently not set. This should be set, when coor sends out a “start_run”.

e C_RUN_FINISHED

Set in set_proc_data.

e C_RUN_ABORTED
Not used.

4.3 Subsystem_Validation_Status object

The Subsystem Validation_Status object can be in the following states:

e C_UNKNOWN_VLDT_STATE

Set to this, when a Subsystem Validation_Status object is created with the vali-
dation option off.

e C_READY_FOR_VALIDATION

Set to this, when a Subsystem Validation_Status object is created with the vali-
dation option on.

e C_VALIDATION_IN_PROGRESS

Set in send_processed_data.

e C_VALIDATION_FINISHED

Set in set_validation_status, upon receiving a Validation_Status message from
the Validator.

e C_ABORTED_VALIDATION
Not used.

10



4.4

Subsystem_Commit_Status object

The Subsystem_Commit_Status object can be in the following states:

4.5

C_UNKNOWN_COMMIT_STATE
Not used.

C_READY_FOR_COMMIT

Set in start_db_commit.

C_COMMIT_IN_PROGRESS

Set in send_commit_data.

C_COMMIT_FINISHED

Set in set_commit_status, upon receiving a Commit_Status message from the
Validator.

C_ABORTED_COMMIT
Not used.

Subsystem_Validation object in Subsystem Validator

The Subsystem_Validation object can be in the following states:

UNKOWN

READY_FOR_VALIDATION

Set in read_opaque_message method, when a START_VALIDATION message is re-
ceived.

VALIDATION_IN_PROGRESS
VALIDATION_FINISHED
VALTDATION_ABORTED

READY_FOR_COMMIT

Set in read_opaque_message method, when a START_COMMIT message is received.
COMMIT_IN_PROGRESS
COMMIT_FINISHED

COMMIT_ABORTED

11



5 Messages and Message Handlers

This section describes messages that are exchanged between subprocesses and Calib_Manager.

5.1 String Messages

String messages are sent by coor, Calib_Manager GUI and Validator to Calib_Manager.

5.1.1 coor Messages
e init
Do nothing at the moment

e coor_addr

_coor_port and _coor_host are set in Online_Calibration object.

e set_client

add_subsystem(subsys_id, coor_cmd) is called. coor_cmd is used to see if set or
clear is required when configure is issued later.

e calib_type
set the calibration type.

e crates

set the list of crates.

e stream

set the calibration stream id.

e configure

configures Subsystem_Onl_Calibration object.

e runinfo

set run_number.

e start_run

set status to RUN_IN_PROGRESS.
e pause_run
e resume_run
e stop_run

e clear_client

12



5.1.2 Calib_Manager GUI Messages

e STATUS_REQUEST

subsystem_status_msg method is called.

5.1.3 Validator Messages

e VALIDATION_INQUIRY

send back the list of crates requested for validation.

e DATA REQUEST

if the status of this subsystem is READY_FOR_VALIDATION or VALIDATION_IN_PROGRESS,
send back the subsystem calibration data to the validation process. if the valida-
tion for all of the crates are completed, send a VALIDATION_STATUS message with
status=VALIDATION_FINISHED.

5.2 Opaque Messages

Opaque messages are used to convey mainly numerical values that are cumbersome to
code/encode in the String message. The format of the message is the following:

1. Message identifier

An integer word is used to identify the message type.

2. Subsystem identifier

An integer word is used to identify the sub-detector system.

3. Number of integer words

An integer word to describe the number of integer values that are sent by this
message.

4. Array of integer words

An array of integer numbers.

5. Number of float words

An integer word to describe the number of floating point values that are sent by
this message.

6. Array of float words

An array of floating point numbers.

There are 10 message types described below.

13



e START_CALIB

Calib_Manager receives it from GUL

e STATUS_MSG

Calib_Manager sends it to GUI, upon receiving a request.

e PROC_STATUS
Obsolete.

e PROCESSED_DATA

Calib_Manager sends it to the Validator.

e START_VALIDATION

Calib_Manager sends it to the Validator.

e VALIDATION_STATUS

Calib_Manager sends it to the Validator, when data for all of the crates have been
sent to the Validator.

e VALIDATION_SUMMARY

Validator sends it to the Calib_Manager.

e START_COMMIT
GUI sends it to the Calib_Manager.

e COMMIT_STATUS
Validator sends it to the Calib_Manager.

e COMMIT_SUMMARY
Not used.

5.3 Event Messages

There are two types of Event messages for calibration runs. The Event message from a
SDAQ calibration run is similar to Opaque messages except that they contain an event
header for routing by the DAQ data mover processes. The format of the data part of the
message is the following:

1. Crate identifier

One Event message contains data from only one crate. This crate identifier is
also used to determine the sub-detector system that is sending this message. The
data crate map is described in a note (see http://niuhep.physics.niu.edu/ fort-
ner/d0/algo/unpack/crates.pdf).

14



2. Message identifier

An integer word is used to define the calibration type.

3. Number of channels

An integer word is used to describe the number of channels that are calibrated.

4. Calibration record

If the pedestal values are sent by this message, the follwoing four words are repeated:
an integer word of channel id, a float word of the pedestal value, a float word of the
error of pedestal value, and an integer word of error flag.

If the gain values are sent by this message, the following six words are repeated: an
integer word of channel id, a float word of the pedestal value, a float word of the
error of pedestal value, a float word of the gain value, a float word of the error of
gain value, and an integer word of error flag.

The Event message from a Calorimeter calibration run that uses the L3 as the data
processor is the standard Event_Message with an additional data chunk (L3DebugChunk)
attached to it. The L3DebugChunk contains the results of a calibration run. This chunk
can have pedestals from all 12 Calorimeter crates.

15



