
DØ Run II Data Distributor Design

Gerald M. Guglielmo�, Carmenita Moorey

(FNAL CD/ODS/OSP)

February 25, 1999

Version 0.2

Abstract

This document serves as a basic design for the DØ Run II Data

Distributor. The Data Distributor is responsible for receiving events

from the collectors/routers and distributing events according to re-

quests made by Examine client programs. The basic requirements[1]

specify that an Examine client declares classes of events which the Data

Distributor will store to satisfy later requests from the Examine client.

For each Examine client, the Data Distributor must store events sep-

arately and management of the stored events is initially con�gurable

by the Examine client.

�gug@fnal.gov
ycarmenita@fnal.gov

1

Contents

1 General Overview 8

1.1 Event Queue Manager 8

1.2 Event Queue Statistics Management 10

1.3 Message Handling . 11

1.4 Memory Tracking . 11

2 Initialization 12

3 Event Received 13

4 Examine Initial Connection 14

5 Event Requested 15

6 Lost Client Connection 15

7 Start of Run Message Received 16

8 End of Run Message Received 16

9 Request for Status Received 16

10 Guaranteed Message Delivery 17

11 Error Handling 17

12 Distributor Core Classes 17

12.1 QueueMemory . 17

12.1.1 Private Data Members 18

2

12.1.2 Private Member Functions 18

12.1.3 Public Data Members 18

12.1.4 Public Member Functions 19

12.2 Wrap_Info . 19

12.2.1 Private Data Members 19

12.2.2 Private Member Functions 21

12.2.3 Public Data Members 21

12.2.4 Public Member Functions 21

12.3 Wrap_Man . 23

12.3.1 Private Data Members 24

12.3.2 Private Member Functions 24

12.3.3 Public Data Members 24

12.3.4 Public Member Functions 25

12.4 Wrap_Thread . 25

12.4.1 Private Data Members 25

12.4.2 Private Member Functions 27

12.4.3 Protected Member functions 28

12.4.4 Public Data Members 28

12.4.5 Public Member Functions 28

12.5 genStream . 29

12.5.1 Private Data Members 30

12.5.2 Private Member Functions 30

12.5.3 Protected Member Functions 30

12.5.4 Public Data Members 30

3

12.5.5 Public Member Functions 30

12.6 genStream_Info . 31

12.6.1 Private Data Members 31

12.6.2 Private Member Functions 31

12.6.3 Public Data Members 31

12.6.4 Public Member Functions 31

12.7 genStream_Man . 32

12.7.1 Private Data Members 32

12.7.2 Private Member Functions 32

12.7.3 Protected Member Data 33

12.7.4 Public Data Members 33

12.7.5 Public Member Functions 33

13 Message ID values 33

13.1 Dist_Message_ID . 34

14 Testing and Options Classes 34

14.1 Dump2 . 34

14.1.1 Private Data Members 34

14.1.2 Private Member Functions 35

14.1.3 Public Data Members 35

14.1.4 Public Member Functions 35

14.2 Optionsdd . 36

14.2.1 Private Data Members 36

14.2.2 Private Member Functions 37

4

14.2.3 Public Data Members 37

14.2.4 Public Member Functions 37

15 Distributor Interface Classes 37

15.1 DistFullStats . 38

15.1.1 Private Data Members 38

15.1.2 Private Member Functions 38

15.1.3 Public Data Members 38

15.1.4 Public Member Functions 38

15.2 DistFullStats_Message 40

15.2.1 Private Data Members 40

15.2.2 Private Member Functions 40

15.2.3 Public Data Members 40

15.2.4 Public Member Functions 40

15.2.5 Automatic Reference Counting 42

15.3 DistQueReq . 42

15.3.1 Private Data Members 42

15.3.2 Private Member Functions 42

15.3.3 Public Data Members 43

15.3.4 Public Member Functions 43

15.4 DistQueReq_Message 44

15.4.1 Private Data Members 44

15.4.2 Private Member Functions 44

15.4.3 Public Data Members 45

15.4.4 Public Member Functions 45

5

15.4.5 Automatic Reference Counting 46

15.5 DistQueStats . 46

15.5.1 Private Data Members 46

15.5.2 Private Member Functions 47

15.5.3 Public Data Members 47

15.5.4 Public Member Functions 47

15.6 DistTrigReq . 48

15.6.1 Private Data Members 48

15.6.2 Private Member Functions 49

15.6.3 Public Data Members 49

15.6.4 Public Member Functions 49

15.7 DistTrigStats . 50

15.7.1 Private Data Members 50

15.7.2 Private Member Functions 51

15.7.3 Public Data Members 51

15.7.4 Public Member Functions 53

15.8 sendEvent_Message 53

15.8.1 Private Data Members 53

15.8.2 Private Member Functions 54

15.8.3 Public Data Members 54

15.8.4 Public Member Functions 54

15.8.5 Automatic Reference Counting 55

15.9 sendStatistics_Message 55

15.9.1 Private Data Members 56

6

15.9.2 Private Member Functions 56

15.9.3 Public Data Members 56

15.9.4 Public Member Functions 56

15.9.5 Automatic Reference Counting 57

7

1 General Overview

The Data Distributor is an online event queuing system for the monitoring

of data in parallel to the data being written to tape. Programs which would

like to receive events from the online pipeline make a request to the data

distributor to allocate a queue and specify which trigger subsets they would

like to study. Each program making a request is allocated a separate queue.

The data distributor will queue events which match any of the trigger subsets

and apply any prescales requested. When a request for an event is seen, the

distributor will remove the oldest event in the queue and send it to the

requester. Statistics for the queue can also be requested. The system is

designed to handle multiple input connections from the trigger pipeline and

multiple monitor program connections. The expected nominal input rate

from the trigger pipeline is 50 Hz of events with an average size of 250 KB

(12.5 MB/sec). The data distributor runs under OSF1, IRIX and Linux.

1.1 Event Queue Manager

The event queue manager serves as the basic interface to the event queues in

the Data Distributor. The event queue manager has a processor for handling

messages necessary for the management of the event queues. For each type

of message, the manager will register a callback function which will take

the appropriate actions to process the message. The manager is responsible

for maintaining a separate queue for each examine client which is actively

8

connected. Events are placed on the a queue if they have a trigger or stream

id that matches one in the list associated with the queue, and they pass the

appropriate prescale criteria.

The event queue manager can remove events from the queue if the queue

is full and the overwrite �ag is set to true. In this case, the manager can

remove the event which has been in the queue the longest and place a new

event on the queue. If the overwrite �ag is not set and the queue is full, the

manager will discard the new event.

When a request for an event is received, the event queue manager must

determine which examine client made the request and determine which event

queue it is maintaining for the client. Once the appropriate queue has been

determined, the manager will signal that the outstanding requests for events

for that queue should be updated to include the new request. The actual

removing and sending of an event is handled by a processor associated with

the queue.

When a request for statistics is received, the event queue manager must

�rst determine the type of the request. There are two types of statistics

requests. The �rst type is for statistics on the queue associated with the

requesting client and the second type is for all queues currently maintained

by the manager. Next the manager will collect the statistics from the appro-

priate queue or queues and send it to the client.

The connection stop message signals that a client connection has been

lost. After determining the appropriate queue for that connection, the man-

9

ager will �ush the queue and then delete and the associated processor.

1.2 Event Queue Statistics Management

Each queue has associated with it additional information so that it can be

properly maintained by the event queue manager. This information includes

parameters which state the maximum depth of the queue, if events on the

queue can are allowed to be over-written, which connection (and thus examine

client) the queue is maintained for, the number of events that are currently

requested for sending, a list of statistics and parameters for each trigger and

stream id accepted by the queue, and a �ag to indicate that the queue is still

considered active.

The statistics information and id speci�c parameters (prescales at the

moment) are grouped separately for each trigger and stream id accepted by

the queue. The statistics information is further grouped as an event total

and a event size total for various conditions. Values are accumulated for

events seen by queue which match the trigger or stream id, events which

are deleted because the queue is full, events deleted because of the global

prescale, events over-written because the queue is full, events currently in the

queue, and events sent to the client. These statistics are used for calculating

prescales and to satisfy requests for statistics from examine clients.

10

1.3 Message Handling

The distributor uses the DØme client-server package for communications.

This package allows for the registering of callbacks to handle each type of

message desired. The registering of each callback speci�es the processor that

the callback is being registered with, the function to be called and the object

to associate the callback with. When a message is received by the processor,

the function that was registered for that message is called.

1.4 Memory Tracking

The Data Distributor has the ability to track the potential usage of memory

by the program. Since the queues maintained by the event queue man-

ager and queues associated with the processors allocate and free memory as

needed and can contain messages of vastly di�ering size at any given time,

the amount of memory in use is constantly varying. Therefore, a means of

estimating the potential usage of memory has been implemented based on an

estimated expected event size. The closer the estimated size is to the maxi-

mum allowed message size (maximum event size e�ectively), the less likely a

memory allocation failure due to insu�cient memory will occur.

The queue memory potential usage is tracked by a static instance of

the tracking class. This tracker initially determines the maximum available

memory that can be allocated at runtime, and then keeps track of how much

may potentially be in use for event queues. Each time an event queue is

11

requested, the tracker will check to see if su�cient memory will be available

before creating the queue. If there is su�cient memory, then the total of

memory potentially in use is updated to include the memory for the new

queue and the queue is allowed to be created. If there is not su�cient memory

the queue will not be created. When a queue is deleted, for example when

a connection is lost, then the tracker updates the total potential usage to

indicate that more memory is available again.

2 Initialization

At runtime, the Data Distributor will determine the amount of memory that

is available for the program to allocate. In addition to keeping track of

the size of allocatable memory, the program will need to monitor how much

memory could conceivably be used by the currently available event queues

at any given time during the running of the program (at initialization time

there will be none). It is expected that the number of queues will vary over

time, with queues of di�ering depth being added and removed. Event sizes

will di�er from event to event based on many factors and so one must assume

potentially full queues of maximum event size can be accommodated without

generating an error. All of this information will be used to assure that enough

memory is available to handle a new queue request before the new queue will

be allowed to be created. The request to create a new queue will be rejected

and a message indicating why must be returned to the client.

12

The Data Distributor will also need to start listening for multicasting of

events at this time. As an event is received, the Data Distributor will need to

determine if it's trigger or stream criteria match any of the requested types

for each of the current event queues.

3 Event Received

When an event is received, the Data Distributor will need to check it's trig-

ger and stream criteria against those stored for each event queue. If the

event matches a type requested for a queue, then the event will be added

to that queue according to the de�ned prescales and rules speci�ed for that

trigger type in that speci�c queue given the current state of the queue. The

appropriate statistics will be updated for that trigger and queue combination.

The event will only be written to the same queue once, so after �nding a

match in any given queue the Distributor stops searching on that queue and

begins searching the next unchecked queue. If found to match the require-

ments of another queue, then the event will also be added to that queue and

the appropriate statistics updated. In this way, a event can be written to zero

or more queues, but only once to any given queue. The Data Distributor is

not allowed to communicate back to the collectors/routers, it is only allowed

to receive messages from these servers.

13

4 Examine Initial Connection

When an Examine client makes a connection to the Data Distributor, the

client will be requesting a queue be created to handle events of the types it

would like to receive. The request will contain the depth of the queue, types

of events and criteria for handling events of each type. The Data Distributor

will use this information to determine if there is su�cient memory available

to allow the proper management of this new queue based on the current

status of the program. If there is insu�cient resources the Data Distributor

will refuse to allocate the queue and inform the Examine client the reason for

the refusal (insu�cient memory in this case). If there is adequate memory

resources available, the Data Distributor will create the new queue, update

its records on current memory needs and then inform the Examine client

that the request has been successful. Events now received will be eligible for

placement on the new queue. It is the responsibility of the Examine client

to ask the Data Distributor for an event when it is ready to handle it.

Each queue can contain up to a preset maximum number of events, a

limit speci�ed by the Examine client for the connection. The queue can store

events which match a member in the list of trigger and stream identi�cations

for the queue, be able to prescale separately for each di�erent type of trigger

or stream and keep separate statistics for each di�erent type. To handle all

of this, each queue should have a means for tracking the information and

statistics for each one of the trigger and stream types it will accept. The

14

number of di�erent types is variable and can be as low as one.

5 Event Requested

When a request for an event is received from an Examine client, the Data

Distributor will attempt to remove the �rst event from the queue (the event

which has been on the queue the longest). If no events are present, then the

program will allow a waiting period for one to appear on the queue (how

long?). Perhaps this should be a loop that can periodically check to see if

the Examine client has made any other requests while waiting, like a request

for status for example. If an event is available, the Data Distributor will

remove the event from the queue, update the appropriate statistics for the

queue and trigger type, and send the event to the Examine client.

6 Lost Client Connection

When the connection to the Examine client is lost, for whatever reason,

the Data Distributor will clean up the event queue associated with that

connection by �rst �ushing the events in the queue and then by removing

the queue itself. The memory management system will also be informed at

this time that the memory for that queue is no longer needed.

15

7 Start of Run Message Received

Not sure what is required here.

8 End of Run Message Received

Not sure what is required here either

9 Request for Status Received

The Data Distributor will keep track of statistics for each queue re�ecting to-

tal number and size of events seen at each queue for each event type accepted

by the queue and information on the fate of those events. For example, an

event may be seen by the queue but not added because of a prescale setting

for that type of trigger. This information will be available to the Examine

client by means of a speci�c request for status. There should also be a global

status request mechanism which will return the information for all of the

queues currently allocated.

I am not sure what the mechanism will be for handling a global request for

status which is not made by one of the Examine clients. Perhaps this can be

handled by the same mechanism that handles the Examine client connections,

only instead of creating a queue it sends the global status message and then

deletes itself.

16

10 Guaranteed Message Delivery

Not sure what is required here beyond messages that are held until they can

be successfully sent. Who will manage these messages and how and when

they will be sent is unclear.

11 Error Handling

Again, not sure what needs to be done here. The requirements mention

generating alarms but does not specify when or what this really means.

12 Distributor Core Classes

The section describes the core classes of the distributor which govern the

internal functionality used by the distributor main program. These classes

are involved in the proper queueing of events and maintenance of the queuing

system. The distributor classes are in the dlg namespace.

12.1 QueueMemory

This set of classes allows potential memory usage to be tracked by the pro-

gram and also can determine the maximum allocatable memory at runtime.

The MemoryChunk class is just a block 5,000,000 characters that is used as

a estimated average maximum amount of memory used by each event in a

queue. The main class is QueueMemory.

17

12.1.1 Private Data Members

Values are stored in megabytes.

int _current_queue_mb_memory Estimate of potential memory us-

age by currently allocated queues and any other functionality speci�-

cally registered to the instance.

int _max_memory_mb_per_queue_entry Estimate of maximum po-

tential size of an entry on the queue (not necessarily the physical max-

imum if lower estimate is practical).

int _max_mb_memory Maximum memory available based on unit of

maximum queue entry size.

typedef ACE_Guard<ACE_Thread_Mutex> _current_guard A

guard for helpping in thread safety.

mutable ACE_Thread_Mutex _current_lock A lock for thread safety.

12.1.2 Private Member Functions

void memoryLimit() Returns maximum allocatablememory in megabytes.

bool canAllocate(int) Determines enough memory is available to handle

potential usage for a queue of speci�ed depth.

12.1.3 Public Data Members

There are no public data members for this class.

18

12.1.4 Public Member Functions

void QueueMemory Class constructor taking no arguments.

bool allocateQueue(int) Requests that potential memory usage be up-

dated if enough memory for a speci�ed queue depth exists. Returns

true if su�cient memory.

bool deallocateQueue(int) Updates potential memory usage to indicate

that a queue of size speci�ed has been removed.

void dump() Dumps information on instance to standard output.

12.2 Wrap_Info

This class contains the statistics information for a given trigger or stream

id that is accepted by the queue. This class publicly inherits from gen-

Stream_Info.

12.2.1 Private Data Members

int _stream_id Stream ID value.

int _trigger_id Trigger ID value.

double _prescale_all Global prescale on events for seen by the queue

that match the trigger or stream ID.

19

double _prescale_bfull Prescale applied when determining if events should

be over-written in the queue. Calculated based on current number of

events deleted and over-written because the bu�er was full for the trig-

ger or stream ID of the new event.

unsigned int _ev_count Number of events seen at the queue matching

the trigger or stream ID.

double _kb_count Number of KBytes seen at the queue for events match-

ing the trigger or stream ID.

unsigned int _ev_del_bfull Number of events deleted that match the

trigger or stream ID.

double _kb_del_bfull Number of KBytes deleted for events that match

the trigger or stream ID.

unsigned int _ev_del_prescale Number of events deleted because of

prescale that match the trigger or stream ID.

double _kb_del_prescale Number of KBytes deleted because of prescale

for events that match the trigger or stream ID.

unsigned int _ev_ovrt_bfull Number of events over-written because of

the bu�er being full that match the trigger or stream ID.

double _kb_ovrt_bfull Number of KBytes over-written because of the

bu�er being full for events that match the trigger or stream ID.

20

unsigned int _ev_depth Number of events in the queue matching the

trigger or stream ID.

double _kb_depth Number of KBytes in the queue for events matching

the trigger or stream ID.

unsigned int _ev_sent Number of events sent to the client from the

queue matching the trigger or stream ID.

double _kb_sent Number of KBytes seen sent to the client from the

queue for events matching the trigger or stream ID.

12.2.2 Private Member Functions

There are no private member functions for this class.

12.2.3 Public Data Members

There are no public data members for this class.

12.2.4 Public Member Functions

Wrap_Info(int,int,double,double) Class constructor taking four param-

eters. The �rst and second parameters are the stream and trigger ID

values. The third and fourth are the global and bu�er full prescale

values.

virtual int stream_id() const Returns stream ID.

21

virtual unsigned int ev_count() const Returns number of events seen

at the queue.

virtual double kb_count() const Returns number of KBytes seen at the

queue.

virtual void dump() const Dumps information on class to standard out-

put.

int trigger_id() const Returns trigger ID.

unsigned int ev_pass_prescale() const Returns number of events that

passed the global prescale.

unsigned int ev_del_bfull() const Returns number of events deleted be-

cause the bu�er was full.

unsigned int ev_ovrt_bfull() const Returns number of events over-written

because the bu�er was full.

void new_event(double) Increment statistics for events seen at the queue.

Takes one parameter which gives the size in KBytes of the event.

virtual void add_event(double) Increment statistics on events in the

queue. Takes one parameter which gives the size in KBytes of the

event.

void remove_event(double) Update statistics on events in the queue.

Takes one parameter which gives the size in KBytes of the event.

22

void ovrt_event(double) Update statistics for events over-written. Takes

one parameter which gives the size in KBytes of the event.

void delete_event_bfull(double) Increment statistics on events deleted

because the bu�er was full. Takes one parameter which gives the size

in KBytes of the event.

void delete_event_prescale(double) Increment statistics on events deleted

because of the global prescale. Takes one parameter which gives the

size in KBytes of the event.

void send_event(double) Increment statistics on events sent to client.

Takes one parameter which gives the size in KBytes of the event.

double prescale_all() Returns global prescale for the trigger or stream

ID.

double prescale_bfull() Returns the bu�er full prescale.

DistTrigStats get_statistics() const Returns statistics for a trigger ID

in a container for easy access.

12.3 Wrap_Man

This class is the queue manager which allows the over-writing of events in

the queue and prescaling of events before writing to the queue. The class

inherits publicly from genStream_Man.

23

12.3.1 Private Data Members

QueueMemory* _ptr_programMemory A pointer to the potential mem-

ory usage tracker.

12.3.2 Private Member Functions

virtual genStream* get_streamer(int) Obsolete?

int receive_queue_request(Auto_DistQueReq_message) Callback

for handling a queue allocation message.

int receive_sendEvent_request(Auto_sendEvent_message) Callback

for handling a send event message.

int receive_sendStatistics_request(Auto_sendStatistics_message)

Callback for handling a send statistics message.

int receive_Connection_Stop(Ref_Ptr<Connection_Stop_Msg>)

Callback for handling a connection stop message that is generated when

a connection is lost.

12.3.3 Public Data Members

There are no public data members for the class.

24

12.3.4 Public Member Functions

Wrap_Man(QueueMemory*) Class constructor taking one parameter

which is a pointer to the potential memory usage tracker.

int queue_request(D0me::connection*,DistQueReq&) Handles the re-

quest for a queue to be added without using the callback mechanism.

The �rst argument is a pointer to a connection object for the client

and the second argument speci�es the parameters for the queue. This

function is called by the callback for requesting a queue.

12.4 Wrap_Thread

This class is a container for the event queue and also holds information for

the management of the queue including where the statistics information can

be found. This class inherits publicly from genStream and Thread.

12.4.1 Private Data Members

typedef Queue<Auto_Event_Message> Inner_Queue A typedef for

the type of queue which will be used.

typedef map<int,Wrap_Info*> Info_map A typedef for the map which

will provide access to the objects holding the statistics information.

Inner_Queue _cevq The event queue.

int _maxQueueDepth The maximum depth of the event queue.

25

bool _ovrt_�ag The over-write �ag for the queue. True means events can

be over-written.

D0me::connection* _sendConnectonPtr pointer to the client connec-

tion.

int _sendEventsRequested Number of events request to be sent that

have not yet been removed from the queue.

bool _queueDesired This queue is still considered active indicating the

connection to the client is still present.

Info_Map _info The map that allows access to the objects containing the

statistics information.

typedef ACE_Guard<ACE_Thread_Mutex> _Queue_guard

mutable ACE_Thread_Mutex _queue_lock Extra lock to allow event

over-writing in the queue.

mutable ACE_Thread_Mutex _queue_clean_lock Extra lock to al-

low proper ordering in threads when cleanup is to be done.

ACE_Thread_Mutex _access_control Used as part of the condition

checking to properly synchronize threads in this class when a cleanup

is requested.

26

ACE_Condition<ACE_Thread_Mutex> _queueControl The con-

dition class used for synchronization when a cleanup of the queue is

requested.

12.4.2 Private Member Functions

void* run() Processor for threaded queue.

bool removeEvent(Auto_Event_Message&) Remove event from the

queue.

virtual bool check_data_�le(double) Obsolete.

virtual bool move_data_�le() Obsolete.

bool prescale(unsigned int,unsigned int,double) Returns true if event

passes prescale. The �rst argument is the total number of events in-

cluding the new one. The second argument is the number of events

that have passed. The third argument is the prescale value.

void add_trigger(DistTrigReq&,bool) Adds a trigger to the list of al-

lowed triggers for the queue. The �rst argument contains the param-

eters related to the trigger request and the second is the over-write

�ag.

27

12.4.3 Protected Member functions

virtual bool write_event(Event_Message*) Retrieves and sends an event to

the client.

12.4.4 Public Data Members

There are no public data members in this class.

12.4.5 Public Member Functions

Wrap_Thread(int,bool,D0me::connection*,DistQueReq) Class con-

structor taking four arguments. The �rst argument is the maximum

queue depth, the second argument is the over-write �ag, the third ar-

gument is a pointer to the client connection and the fourth argument

is the request which contains all the information for each trigger and

stream ID acceptable by the queue.

�Wrap_Thread() Class Destructor.

virtual add_event(Auto_Event_Message) Adds an event to the queue

if it passes the prescales.

virtual void �ush() Flush the events from the queue.

virtual void cleanup() Cleanup the queue and the thread for the queue.

virtual bool active() Return the value indicating if the queue is still ac-

tive.

28

virtual int stream_id(int) Returns stream ID for the index passed in.

virtual const genStream_Info& stream_info(int) const Returns class con-

taining statistics information based on index passed in.

virtual void dump() const Dumps statistics to standard output for all

trigger and stream ID values allowed by this queue.

virtual bool match(int) Compare trigger type input to the allowed values

for the queue and see if one is matched.

virtual void setSendEventRequested() Increment the number of requested

events and signal to the processor thread that a new event request has

been seen.

virtual D0me::connection* connection() Return connection pointer to

client.

DistQueStats get_statistics() const Returns a container class contain-

ing statistics information for all the trigger and stream ID values ac-

cepted by the queue.

12.5 genStream

An abstract class for holding a queue and information necessary for manage-

ment of the queue.

29

12.5.1 Private Data Members

There are no private data members in this class.

12.5.2 Private Member Functions

virtual bool check_data_�le(double)=0

virtual bool move_data_�le()=0

12.5.3 Protected Member Functions

virtual bool write_event(Event_Message*)=0

12.5.4 Public Data Members

There are no public data members in this class.

12.5.5 Public Member Functions

virtual add_event(Auto_Event_Message)=0

virtual void �ush()=0

virtual void cleanup()=0

virtual bool active()=0

virtual int stream_id(int)=0

virtual const genStream_Info& stream_info(int) const =0

30

virtual void dump() const=0

virtual bool match(int)=0

virtual void setSendEventRequested()=0

virtual D0me::connection* connection()=0

12.6 genStream_Info

Abstract class for statistics information for a trigger or stream ID in a queue.

12.6.1 Private Data Members

There are no private data members in this class.

12.6.2 Private Member Functions

There are no private member functions for this class.

12.6.3 Public Data Members

There are no public data members in this class.

12.6.4 Public Member Functions

virtual int stream_id() const=0

virtual unsigned int ev_count() const=0

virtual double kb_count() const=0

31

virtual void add_event(double)=0

virtual void dump() const=0

12.7 genStream_Man

This is a general class for a queue managing class. This class inherits publicly

from D0me::Processor.

12.7.1 Private Data Members

There are no private data members in this class.

12.7.2 Private Member Functions

int receive_event(Auto_Event_Message) Callback for handling event

message.

int receive_status(D0me::Ref_Ptr<D0me::Status_Message>) Callback

for handling status message.

bool check_stream_id(int) Checks if stream ID is being managed. Ob-

solete.

virtual genStream* get_streamer(int)=0

32

12.7.3 Protected Member Data

typedef map<int,genStream*> _Stream_Map Typedef for a map to

hold queue container class instances for management.

_Stream_Map _sm The map allowing access to the queue container in-

stances being managed.

12.7.4 Public Data Members

There are no public data members in this class.

12.7.5 Public Member Functions

genStream_Man() Class constructor taking no arguments.

�genStream_Man() Class destructor.

void dump() const Dump statistics information for queues managed to

standard output.

int queue_request(D0me::Connection* queue_id, DistQueReq&) Func-

tion to add a queue without going through the callback mechanism.

13 Message ID values

The message ID values for the Distributor are contained in one include �le

to simplify the expansion for new ID values. All of the message ID values

are de�ned as o�sets from a base message ID value.

33

13.1 Dist_Message_ID

The following message ID values are currently implemented for the Distrib-

utor.

const int Dist_Base_Message_ID = 10000;

const int DistQueReq_Message_ID = Dist_Base_Message_ID + 1;

const int sendEvent_Message_ID = Dist_Base_Message_ID + 2;

const int DistFullStats_Message_ID = Dist_Base_Message_ID + 3;

const int sendStatistics_Message_ID =Dist_Base_Message_ID + 4;

14 Testing and Options Classes

This section describes classes that are used for testing and for providing

command line options functionality.

14.1 Dump2

This class allows part of a binary memory allocation to be dumped in hex

format to standard output. This can be useful in testing the integrity of

messages which contain binary data.

14.1.1 Private Data Members

size_t _length Size of data to be dumped in hex format.

34

size_t _size Size of data and extra formatting information for dumping in

hex format.

char* _buf Bu�er for storing formatted information.

int _o�set An o�set value for positioning where in the binary data to begin

the dump from.

int _line_size The number of characters to dump per line.

14.1.2 Private Member Functions

void init(size_t) Initial bu�er for formatted data.

size_t l2s(size_t) Convert from size of binary data to size for formatted

data for dumping.

friend ostream& operator<�<(ostream&,Dump2&) Overloaded oper-

ator for printing.

14.1.3 Public Data Members

No public data members in this class.

14.1.4 Public Member Functions

Dump2(size_t length=16) Class constructor taking up to one argument

for length.

35

Dump2(const unsigned char* const,size_t length=16) Class construc-

tor taking pointer to binary data and up to one more argument for

length.

�Dump2() Class Destructor.

const char* str() const Returns the bu�er of formatted data.

const char* str(const unsigned char* const,size_t length=0) Initializes

bu�er with formatted data for dumpping and returns the bu�er.

int line_size() Returns the line size.

Dump2& line_size(int) Returns the instance with new value for the line

size.

14.2 Optionsdd

This class provides the functionality for command line options.

14.2.1 Private Data Members

u_short port A port number for listening.

std::string _data_dir This is obsolete

int _verbose Flag for printing extra status information.

int _debug A debug level for the DØme classes.

36

14.2.2 Private Member Functions

There are no private member functions for this class.

14.2.3 Public Data Members

There are no public data members for this class.

14.2.4 Public Member Functions

u_short port() const Returns port number.

const std::string& data_dir() const Obsolete.

int verbose() const Returns value of verbose �ag.

int debug() const Returns debug level for DØme classes.

15 Distributor Interface Classes

This section describes the various classes that can be used to interface to

the Distributor program with an examine client. There are two basic types

of interfaces classes available. The �rst type of interface class is for making

requests of the Distributor and the second type is for accessing information

received from the Distributor. The information in this section can also be

found in the Interfacing to the DØ Data Distributor document[2].

37

15.1 DistFullStats

The DistFullStats class is allows access to information on the statistics for

queues being managed by the data distributor. There is also information in

the characteristics of the queues. For details on what information is stored,

see the section describing the DistQueStats class (section 15.5).

15.1.1 Private Data Members

There are no private data members in this class.

15.1.2 Private Member Functions

There are no private member functions in this class.

15.1.3 Public Data Members

vector<DistQueStats> _queue There is only one public data member

in this class called �_queue�, which is a vector of DistQueStats objects.

Accessing the queue vector is best done through the member functions.

The vector starts at index 0.

15.1.4 Public Member Functions

void add_queue(const DistQueStats&) This member function adds in-

formation for a queue to the class by adding a DistQueStats object to

the vector _queue.

38

DistFullStats() Class constructor taking no arguments.

DistFullStats(int) Class constructor taking one argument indicating a min-

imum number of queues that will have information stored in the class.

DistFullStats(DistFullStats&) Class copy constructor.

DistQueStats& getQueStats(int) const This member function takes one

argument indicating an index of the _queue vector and returns a Dis-

tQueStats object containing information on one queue. The function

will not change member data.

int numberQueues() const This member function returns the number of

queues that described in the class. The return value indicates the

number of entries in the _queue vector.The function will not change

member data.

size_t length() const This member function returns the size of memory

needed to XDR encode the information for transmitting over the net-

work. The function will not change member data.

void dump() const This function dumps to standard output information

on all queues contained in the vector _queue. The function will not

change member data.

39

15.2 DistFullStats_Message

The DistFullStats_Message class is a DØ client-server (DØme) message class

for transmitting over the network statistics information on queues managed

by the Distributor. This is a message class that basically wraps a DistFull-

Stats object.

15.2.1 Private Data Members

DistFullStats _fullStats Holds queue statistics information for reporting

to client.

15.2.2 Private Member Functions

There are no private member functions in this class.

15.2.3 Public Data Members

The only public data member for this class is the message id value.

static const int MSG_ID The message id for the DistFullStats_Message

class.

15.2.4 Public Member Functions

int msg_id() const Returns the MSG_ID for DistFullStats_Message mes-

sage type. The function will not change member data.

DistFullStats_Message() Class constructor taking no arguments.

40

DistFullStats_Message(const DistFullStats&) Class constructor tak-

ing data object.

size_t length() const This member function returns the size of memory

needed to XDR encode the information for transmitting over the net-

work. The function will not change member data.

DistFullStats& statsRequest() Returns a DistFullStats object contain-

ing the queue information that is contained in the message.

size_t in(void*,size_t) This function is used by the client-server frame-

work to decode the message data from XDR format. The �rst argument

is a pointer to the encoded data and the second argument is the size

of the data. The return value indicates the size of data decoded and

should equal input size if function was successfull.

size_t out(void*,size_t) This function is used by the client-server frame-

work to encode the message data to XDR format. The �rst argument

is a pointer to where the encoded data should be stored and the second

argument is the size of the data. The return value indicates the size of

data encoded and should equal input size if function was successfull.

void dump() const This function dumps to standard output information

contained in the DistFullStats object in the message. The function will

not change member data.

41

15.2.5 Automatic Reference Counting

There is a typedef that will automatically reference count for an object of

this message class. This provides a convenient interface for messages of this

class.

Auto_DistFullStats_Message is a typedef to use the client-server auto-

matic reference counting.

15.3 DistQueReq

This class speci�es the parameters for con�guring a queue in the Distributor.

The class contains the global queue parameters plus a list of trigger speci�c

parameters for each trigger that the queue will be con�gured to accept.

15.3.1 Private Data Members

int _maxQueueDepth Maximum depth of queue being requested.

bool _ovrt_�ag Flag indicating if queue allows events to be over-written.

vector<DistTrigReq> _triggerRequest A list of trigger requests con-

taining the trigger request information.

15.3.2 Private Member Functions

There are no private member functions for this class.

42

15.3.3 Public Data Members

There are no public data members for this class.

15.3.4 Public Member Functions

DistQueReq(int,bool,int) Class constructor taking 3 arguments. The

�rst argument speci�es the maximum depth for the queue. The sec-

ond argument indicates whether or not the queue will allow events to

be overwritten. The third argument states the minimum number of

triggers that will be described in the request class (this option may be

removed in the future).

int maxQueueDepth() const Returns the maximum queue depth allowed

for the queue being requested. The function will not change member

data.

void maxQueueDepthSet(int) The function allows the requested maxi-

mum queue depth to be set to a di�erent value in the request.

bool ovrt() const Returns true if the request is for a queue that will allow

overwriting of events. The function will not change member data.

void ovrtSet() This function can change the value of the overwrite �ag in

the request object.

void addtrigger(DistTrigReq&) This functions adds the parameters for

a trigger to the queue request.

43

int numberTrigs() const Returns the number of triggers con�gured in the

queue request. The function will not change member data.

DistTrigReq& getTrigReq(int) const This function returns an object

containing the trigger parameters for one trigger type in the request.

The argument speci�es an index, beginning at 0 and an upper limit

less than the number of trigger speci�ed. The function will not change

member data.

void removeTrigReqs() This function removes all trigger requests from

the the queue request object.

size_t length() const This member function returns the size of memory

needed to XDR encode the information for transmitting over the net-

work. The function will not change member data.

void dump() const This function dumps to standard output information

about the queue request. The function will not change member data.

15.4 DistQueReq_Message

15.4.1 Private Data Members

DistQueReq _qrequest Holds the queue request information.

15.4.2 Private Member Functions

There are no private member functions in this class.

44

15.4.3 Public Data Members

The only public data member for this class is the message id value.

static const int MSG_ID The message id for the DistFullStats_Message

class.

15.4.4 Public Member Functions

int msg_id() const Returns the MSG_ID for DistFullStats_Message mes-

sage type. The function will not change member data.

DistQueReq_Message() Class constructor taking no arguments.

DistQueReq_Message(const DistQueReq&) Class constructor taking

data object.

size_t length() const This member function returns the size of memory

needed to XDR encode the information for transmitting over the net-

work. The function will not change member data.

DistQueReq& QueueRequest() Returns a DistQueReq object contain-

ing the queue request information that is contained in the message.

size_t in(void*,size_t) This function is used by the client-server frame-

work to decode the message data from XDR format. The �rst argument

is a pointer to the encoded data and the second argument is the size

of the data. The return value indicates the size of data decoded and

should equal input size if function was successfull.

45

size_t out(void*,size_t) This function is used by the client-server frame-

work to encode the message data to XDR format. The �rst argument

is a pointer to where the encoded data should be stored and the second

argument is the size of the data. The return value indicates the size of

data encoded and should equal input size if function was successfull.

void dump() const This function dumps to standard output information

contained in the DistQueReq object in the message. The function will

not change member data.

15.4.5 Automatic Reference Counting

There is a typedef that will automatically reference count for an object of

this message class. This provides a convenient interface for messages of this

class.

Auto_DistQueReq_Message is a typedef to use the client-server auto-

matic reference counting.

15.5 DistQueStats

The DistQueStats class contains information on the statistics for a queue

reported by the Distributor.

15.5.1 Private Data Members

There are no private data members in this class

46

15.5.2 Private Member Functions

There are no private member functions in this class.

15.5.3 Public Data Members

int _maxQueueDepth Indicates the maximum number of events that can

be stored in the queue.

int _sendEventRequested The number of events requested that have not

yet been sent.

bool _ovrt_�ag True if the queue allows over-writing of events.

Vector<DistTrigStats> _trig A vector of objects of class DistTrigStats

which hold statistics information for a trigger in the queue maintained

by the Distributor.

15.5.4 Public Member Functions

DistQueStats() Class constructor taking no arguments.

DistQueStats(int,int,bool,int) Class constructor which takes four argu-

ments. The �rst argument is the queue depth. The second argument is

the number of events requested that have not been sent yet. The third

argument speci�es whether or not the queue allows the over-writing of

events. The fourth argument indicates the minimum number of triggers

that will have statistics information added to the object.

47

DistQueStats(const DistQueStats&) The class copy constructor.

void addTrigger(const DistTrigStats&) This function adds statistics in-

formation for a trigger in the queue to the class object.

int numberTrigs() const Returns the number of triggers that are described

by the object. The function will not change member data.

size_t length() const This member function returns the size of memory

needed to XDR encode the information for transmitting over the net-

work. The function will not change member data.

void dump() const This function dumps to standard output information

contained in the DistQueStats object. The function will not change

member data.

15.6 DistTrigReq

The DistTrigReq class is used in a request to the Distributor for specifying

the parameters for a speci�c trigger that will be accepted by the queue being

requested.

15.6.1 Private Data Members

int _stream_id Stream ID.

int _trigger_id Trigger ID.

48

double _prescale_all Global prescale applied to events of this trigger or

stream ID when they are seen at the queue.

double _prescale_bfull Bu�er full prescale applied if the bu�er is full

and over-writing of events is allowed. Prescale is based on number of

events overwritten and number of events deleted because the bu�er is

full.

15.6.2 Private Member Functions

There are no private member functions in this class.

15.6.3 Public Data Members

There are no public data members in this class.

15.6.4 Public Member Functions

DistTrigReq(int,int,double,double) Class constructor taking four argu-

ments. The �rst argument is the stream id accepted by the queue

and associated with this trigger. The second argument is the trigger

id. The third argument is a prescale value that will be applied to

all events matching the trigger (or stream) id. The fourth argument

is a prescale that only applies if event over-writing is allowed for the

queue. If over-writing is allowed, then the fourth argument speci�es a

prescale that applies when the queue is full and allows prescaling of the

over-writing of events.

49

int stream_id() const Returns stream id associated with this trigger re-

quest. The function will not change member data.

int trigger_id() const Returns trigger id associated with this trigger re-

quest. The function will not change member data.

double prescale_all() const Returns prescale value for all events seen by

the queue of the given trigger or stream type. The function will not

change member data.

double prescale_bfull() const Returns prescale value for when the queue

is full. The function will not change member data.

void dump() const This function dumps to standard output information

contained in the DistTrigReq object. The function will not change

member data.

15.7 DistTrigStats

The DistTrigStats class contains information on the statistics for a trigger

request in a queue reported by the Distributor.

15.7.1 Private Data Members

There are no private data members in this class.

50

15.7.2 Private Member Functions

There are no private member functions in this class.

15.7.3 Public Data Members

int _stream_id The stream id associated with this trigger request being

reported.

int _trigger_id The trigger id associated with this trigger request being

reported.

double _prescale_all The overall prescale applied to all events seen by

the queue that match the trigger or stream id.

double _prescale_bfull The prescale value applied when the bu�er is

full. The prescale uses the information on number of events accepted

and number over-written for the trigger associated trigger or stream

type.

unsigned int _ev_count Number of events that match the trigger or

stream id that have been seen by the queue.

double _kb_count The total size of events that match the trigger or

stream id that have been seen by the queue.

unsigned int _ev_del_bfull Number of events that match the trigger or

stream id that have been deleted because the queue was full.

51

double _kb_del_bfull The total size of events that match the trigger or

stream id that have been deleted because the queue was full.

unsigned int _ev_del_prescale Number of events that match the trig-

ger or stream id that have been deleted because of a prescale.

double _kb_del_prescale The total size of events that match the trigger

or stream id that have been deleted because of a prescale.

unsigned int _ev_ovrt_bfull Number of events that match the trigger

or stream id that have been over-written because the queue was full.

double _kb_ovrt_bfull The total size of events that match the trigger

or stream id that have been over-written because the queue was full.

unsigned int _ev_depth Number of events that match the trigger or

stream id currently in the queue.

double _kb_depth The total size of events that match the trigger or

stream id currently in the queue.

unsigned int _ev_sent Number of events that match the trigger or stream

id that have been sent to the client.

double _kb_sent The total size of events that match the trigger or stream

id that have been sent to the client.

52

double _calc_prescale_all The value calculated for the overall prescale

based on the statistics of the queue for the trigger or stream id associ-

ated with the trigger request.

double _calc_prescale_bfull The value calculated for the prescale ap-

plied when the queue is full based on the statistics of the queue for the

trigger or stream id associated with the trigger request.

15.7.4 Public Member Functions

DistTrigStats() Class constructor taking no arguments.

void dump() const This function dumps to standard output information

contained in the DistTrigStats object. The function will not change

member data.

15.8 sendEvent_Message

The sendEvent_Message is a client-sever message class that allows the client

to request the Distributor to send events from the queue it is managing for

the client. The request allows a variable number of events to be requested

at one time.

15.8.1 Private Data Members

int _numberEvents Number of events being requested.

53

15.8.2 Private Member Functions

There are no private Member functions in this class.

15.8.3 Public Data Members

static const int MSG_ID The message id for the sendEvent_Message

class.

15.8.4 Public Member Functions

sendEvent_Message() Class constructor taking no arguments.

sendEvent_Message(const int) Class constructor taking one argument

specifying the number of events requested.

int msg_id() const Returns the MSG_ID for DistFullStats_Message mes-

sage type. The function will not change member data.

size_t length() const This member function returns the size of memory

needed to XDR encode the information for transmitting over the net-

work. The function will not change member data.

int numberEvents() Returns the number of events requested to be sent.

size_t in(void*,size_t) This function is used by the client-server frame-

work to decode the message data from XDR format. The �rst argument

is a pointer to the encoded data and the second argument is the size

54

of the data. The return value indicates the size of data decoded and

should equal input size if function was successfull.

size_t out(void*,size_t) This function is used by the client-server frame-

work to encode the message data to XDR format. The �rst argument

is a pointer to where the encoded data should be stored and the second

argument is the size of the data. The return value indicates the size of

data encoded and should equal input size if function was successfull.

void dump() const This function dumps to standard output information

contained in the message object. The function will not change member

data.

15.8.5 Automatic Reference Counting

There is a typedef that will automatically reference count for an object of

this message class. This provides a convenient interface for messages of this

class.

Auto_sendEvent_Message is a typedef to use the client-server auto-

matic reference counting.

15.9 sendStatistics_Message

The sendStatistics_Message class allows a client to request that the Dis-

tributor send statistics information for either the queue associated with the

connection, or all queues maintained by the Distributor.

55

15.9.1 Private Data Members

int _requestType Speci�es the type of statistics request: 0 for statistics

from only the queue associated with the connection; 1 for all queues

being managed; greater than 1 is reserved for future use.

15.9.2 Private Member Functions

There are no private Member functions in this class.

15.9.3 Public Data Members

static const int MSG_ID The message id for the sendStatistics_Message

class.

15.9.4 Public Member Functions

sendStatistics_Message() Class constructor taking no arguments.

sendStatistics_Message(const int) Class constructor taking one argu-

ment which speci�es whether only the queue associated with the con-

nection should be reported on (a value of 0) or all queues maintained

by the Distributor should be reported on (a value of 1).

int msg_id() const Returns the MSG_ID for DistFullStats_Message mes-

sage type. The function will not change member data.

size_t length() const This member function returns the size of memory

56

needed to XDR encode the information for transmitting over the net-

work. The function will not change member data.

int requestType() Returns 0 if the request is only for the queue associated

with the connection, or 1 if the request is for all queues.

size_t in(void*,size_t) This function is used by the client-server frame-

work to decode the message data from XDR format. The �rst argument

is a pointer to the encoded data and the second argument is the size

of the data. The return value indicates the size of data decoded and

should equal input size if function was successfull.

size_t out(void*,size_t) This function is used by the client-server frame-

work to encode the message data to XDR format. The �rst argument

is a pointer to where the encoded data should be stored and the second

argument is the size of the data. The return value indicates the size of

data encoded and should equal input size if function was successfull.

void dump() const This function dumps to standard output information

contained in the message object. The function will not change member

data.

15.9.5 Automatic Reference Counting

There is a typedef that will automatically reference count for an object of

this message class. This provides a convenient interface for messages of this

class.

57

Auto_sendStatistics_Message is a typedef to use the client-server au-

tomatic reference counting.

58

References

[1] S. Fuess, G. Guglielmo, C. Moore, L. Rasmussen and J. Yu, DØ Run II

Data Distributor Requirements (October 22, 1998).

[2] G. Guglielmo, Interfacing to the DØ Data Distributor (January 26, 1999).

59

