
Introduction to the Python

Programming Language

Scott Snyder

June 4, 1999

And now for
something completely
di�erent.

1

The Life of Python

� \an interpreted, object-oriented, high-level
programming language with dynamic semantics."

� Features:

{ Very clear and coherent syntax and overall
design.

{ Support for object-oriented programming.

{ Powerful collection of built-in types.

{ Easy to extend/embed with C/C++.

{ Large library of services and extensions,
including interfaces to many GUI toolkits (Tk,
MFC, wxwindows, KDE, Gnome, etc.).

{ Portable across many platforms (Unix, VMS,
Mac, VxWorks, NT, etc.).

{ Freely available in source form.

� First developed 1990 by Guido van Rossum at
CWI, Amsterdam.

� Now a large community of users.

2

Python Applications

� Much faster to develop in Python than in
languages like C++.

� Scales well from small scripts to medium-to-large
applications (100's of source �les).

� Not recommended for compute-intensive or
time-critical applications.

{ But can be used as high-level `glue' code in
such applications.

� Being used extensively in the online system for
control and user interface tasks.

{ Python interfaces exist for EPICS and d0me.

� Example:

Recursive factorial computation.

def fac (x):

if x > 1:

return x * fac (x-1)

return 1

3

Running Python

� Setup (on D� systems):

setup python

Currently, this sets up 1.5.1. The newer 1.5.2 is
installed on some systems; use

setup python v1_5_2

� Running the interpreter:

python

Use Control-D (EOF) to exit.

� From Emacs:

{ Python-mode is included with xemacs.

{ From a python bu�er:

� `C-c !' starts an interactive interpreter.

� `C-c C-c' sends the current bu�er to the
interpreter.

� Idle

{ Python IDE in development.

{ Requires Python 1.5.2.

{ $PYTHON_DIR/src/Python/Tools/idle/idle.py

4

Simple Examples

� Numbers

>>> 2+3*4 # Integers.

14

>>> a=2 # Assignment to a variable.

>>> a**10

1024

>>> a**100 # This gets an overflow error.

Traceback (innermost last):

File "<stdin>", line 1, in ?

OverflowError: integer pow()

>>> 2L**100 # Long integers.

1267650600228229401496703205376L

>>> 3.4 / 5.6 # Floats.

0.607142857143

>>> abs (-10) # A built-in function.

10

>>> (2 + 2.1j)**4 # Complex numbers.

(-70.3919-6.888j)

5

Simple Examples

� Strings

String constants and concatenation

>>> print "It's " + '"Monty Python\'s Flying Circus"'

It's "Monty Python's Flying Circus"

>>> 'Ni! ' * 4 # Repetition.

'Ni! Ni! Ni! Ni! '

>>> spam = 'spam'

>>> spam[1] # Slicing.

'p'

>>> spam[-1]

'm'

>>> spam[1:3]

'pa'

>>> spam[1:]

'pam'

>>> len (spam) # len built-in

4

>>> 'This is an ex-%s!' % 'parrot' # Formatting.

'This is an ex-parrot!'

6

Simple Examples

� Lists

>>> l1 = [] # Empty list

>>> l2 = [1, 'dimsdale', ['gumby', 'McTeagle']]

>>> l2[1] # Indexing.

'dimsdale'

>>> l2[1] = 'spiny norman' # Assignment.

>>> l2

[1, 'spiny norman', ['gumby', 'McTeagle']]

>>> l3 = ['spam'] * 4 + ['egg'] # Concatencation.

>>> l3.append ('spam') # Concatenation.

>>> l3

['spam', 'spam', 'spam', 'spam', 'egg', 'spam']

>>> l3[3:5] # Slicing.

['spam', 'egg']

>>> l3[3:5] = ['tomato'] # Slice assignment.

>>> l3

['spam', 'spam', 'spam', 'tomato', 'spam']

>>> len (l3) # Built-in len() function.

5

>>> del l3[-2] # Removing an element.

>>> l3

['spam', 'spam', 'spam', 'spam']

>>> l4 = range (5) # Building a list of ints.

>>> l4

[0, 1, 2, 3, 4]

>>> 3 in l4, 10 in l3 # Membership testing.

(1, 0)

7

Simple Examples

� Dictionaries

>>> table = {'Perl': 'Larry Wall',

... 'Tcl': 'John Ousterhout',

... 'Python': 'Guido van Rossum' }

>>> table['Python']

'Guido van Rossum'

>>> table['C'] = ['Brian Kernighan', 'Dennis Richie']

>>> table['C']

['Brian Kernighan', 'Dennis Richie']

� Files

>>> f = open ('/usr/dict/words')

>>> for i in range (4): print f.readline(),

a

AAA

AAAS

aardvark

>>> words = f.readlines()

>>> len (words)

25482

>>> f.close()

>>> words[1000]

'annoyance\012'

>>> print words[15000],

migrant

>>> words.index('python\n')

18654

8

Interlude: Python isn't C++

Assignment

� C++:

{ Variables name regions of memory.

{ Assignment is a copying operation | the
source is copied to the destination.

list<int> a;

list<int> b = a;

sets b to a copy of a.

� Python:

{ Assignment is a naming operation | it assigns
a new name to an object.

>>> l1 = [1, 2, 3]

>>> l2 = l1

Now l1 and l2 name the same object:

>>> l2

[1, 2, 3]

>>> l2[2] = 10

>>> l1

[1, 2, 10]

9

Simple Statements

� Assignment.

spam = 'SPAM' # basic form

spam, ham = 'yum', 'YUM' # tuple assignment

spam = ham = 'lunch' # multi-target

� Expressions.

spam(egs, ham) # function calls

spam.ham(eggs) # method calls

spam # print interactive

spam < ham and ham != eggs # compound expr's

spam < ham < eggs # range tests

� Print.

print spam, ham # print objects to stdout

print spam, ham, # don't add linefeed

10

Control structures

� If

if x == 'bunny':

print 'hello little bunny'

elif x == 'bugs':

print "what's up doc?"

else:

print 'Run away! Run away!...'

� While

x = y / 2

while x > 1:

if y % x == 0: # remainder

print y, 'has factor', x

break # skip else

x = x-1

else: # normal exit

print y, 'is prime'

� For

>>> for x in ["spam", "eggs", "spam"]: print x,

spam eggs spam

>>> for i in range(5): print 'A shrubbery!'

A shrubbery!

A shrubbery!

A shrubbery!

A shrubbery!

A shrubbery!

11

Syntax Notes

� Comments introduced with `#'.

� Block structuring is encoded by indentation.

{ No chance for the lexical structure to be
inconsistent with the logical structure.

{ Smart editors (such as emacs's python-mode
or Idle) help with this.

� Lines may be continued with a backslash:

if woman.weight() == \

duck.weight():

print "She's a witch"

But the backslash can be omitted if there's a
pending open delimeter:

if (woman.weight() ==

duck.weight()):

print "She's a witch"

12

Function De�nitions

� Example:

def fibo (lim, a=0, b=1):

while b < lim:

print b,

a, b = b, a+b

return b

>>> fibo(100)

1 1 2 3 5 8 13 21 34 55 89

144

>>> fibo(100, 2, 5)

5 7 12 19 31 50 81

131

� Note that def is an executable statement, and
functions are objects.

def inc (x): return x+1

def double (x): return x*2

def compose (a, b):

def tmp (x, a=a, b=b):

return a (b (x))

return tmp

>>> f = compose (inc, double)

>>> f (3)

7

>>> compose (double, inc) (3)

8

13

Interlude: Scoping, or

How Not To Be Seen

� User identi�ers are looked up in the local scope
and the global scope. If a name is on the left side
of an assignment, it is put in local scope.

>>> x = 1 # In global scope

>>> def foo(): print x # Found in global scope

>>> foo ()

1

>>> def bar():

... x = 2 # Assigned in local scope

... print x

>>> bar()

2

>>> x

1

� A name in the global scope can be assigned by
using the global statement:

>>> def fee():

... global x # Look in global scope for x

... x = 2 # Assigned in global scope

... print x

>>> fee()

2

>>> x

2

14

Interlude: Scoping

� But note this common error:

>>> def fum():

... print x # Looks up x in local scope

... x = 4 # (Due to this assignment)

>>> fum ()

Traceback (innermost last):

File "<stdin>", line 1, in ?

File "<stdin>", line 2, in fum

NameError: x

� Scopes do not nest.

>>> def f1 ():

... x = 'albatross'

... def f2 (): print x # Finds x in global scope

... return f2

>>> x

2

>>> f=f1()

>>> f()

2

� Standard solution:

>>> def f1 ():

... x = 'albatross'

... def f2 (x=x): print x

... return f2

15

Library Modules

� Library code is contained in modules.

� Each module has its own namespace.

� Use import to gain access to the module:

>>> import math

>>> math.sqrt (4)

2.0

>>> math.log (10)

2.30258509299

� Use from : : : import : : : to import names from
module into the current namespace.

>>> from math import log

>>> log (10)

2.30258509299

� Write your own modules by putting python
de�nitions in a �le ending with .py.

{ import will search PYTHONPATH for module �les.

{ .py �les will be automatically compiled to .pyc

�les. You shouldn't need to touch the .pyc

�les.

16

Object-Oriented Programming

� Classes created with the class statement.

� Methods always take the instance as the �rst
argument (conventionally named self).

class Myclass:

def meth (self):

print 'Hello world'

>>> c = Myclass() # Create a class instance.

>>> c.meth() # Call the method.

Hello world

� For instance variables, `self' acts like a
namespace.

class Myclass:

def meth (self, x):

self.var = x # Instance variable.

self.__priv = x # Private instance variable.

>>> c = Myclass()

>>> c.meth(3)

>>> c.var

3

17

With inheritance and constructors

class Actor:

def __init__ (self, name): # Constructor.

self.__name = name

def line (self, line):

print '%s says: %s' % (self.__name, line)

class Clerk (Actor): # Inherits from Actor.

def __init__ (self): # Constructor.

Actor.__init__ (self, 'Wensleydale')

def reply (self, cheese):

if cheese == 'Camembert':

self.line ("It's a bit runny.")

else:

self.line ("We're right out of %s today."

% cheese)

class Customer (Actor): # Inherits from Actor.

def __init__ (self, clerk): # Constructor.

Actor.__init__ (self, 'Customer')

self.__clerk = clerk

def ask (self, cheese):

self.line ('Do you have %s?' % cheese)

self.__clerk.reply (cheese)

def skit ():

cust = Customer (Clerk ())

for cheese in ['red Leicester', 'Tilsit',

'Camembert', 'Caerphilly']:

cust.ask (cheese)

18

A Useful Application

� Copy an object given by URL to a local �le.

#!/usr/bin/env python

Standard trick to find interpreter in PATH.

import sys

import urlparse

import string

from urllib import FancyURLopener

Arg list available in sys.argv.

if len (sys.argv) < 2:

print "Usage: %s url [file]" % sys.argv[0]

sys.exit (1)

url = sys.argv[1]

if len (sys.argv) > 2:

file = sys.argv[2]

else:

If only one arg was given, pull of the trailing

component of the URL.

path = urlparse.urlparse (url) [2]

file = string.split (path, '/') [-1]

Copy URL into FILE.

opener = FancyURLopener ()

opener.addheader ('Accept', '*/*')

opener.retrieve (url, file)

19

Tkinter

� Tkinter is a python interface to the Tk toolkit.

� Can only give a brief example here.

from Tkinter import *

top = Tk()

def b1_cmd ():

print 'Ooh, that tickles!'

return

b1 = Button (top, text = 'Push me', command = b1_cmd)

b1.pack ()

b2 = Button (top, text = 'Quit', command = top.quit)

b2.pack ()

top.mainloop ()

20

Further Information

� Python web site: http://www.python.org/

{ Standard documentation set.

{ Tutorials.

{ Essays, white papers.

{ Contributed software.

� Books:

{ David Ascher and Mark Lutz, Learning
Python, O'Reilly, 1999.

{ Aaron Watters, Guido van Rossum, and James
Ahlstrom, Internet Programming with

Python, Henry Holt, 1996.

{ Mark Lutz, Programming Python, O'Reilly,
1996.

� D� packages:

{ thread_util_wrappers

{ d0me_wrappers

21

NOBODY expects
the Spanish
Inquisition!

Questions?

22

