
1

D0 Framework Software Tutorial

Reiner Hauser
Michigan State University

Feb 11, 2003

2

This tutorial covers...

...how to setup and initialize your work area

...how to create and checkout packages

...how to compile and link libraries and binaries

...how to write a D0 framework package for
analysis

...how to access physics objects in your analysis

...how to apply corrections to physics objects

...how to calculate luminosities

3

This tutorial doesn't cover...

...an introduction into object-oriented programming
or C++.

...which triggers you should use for your analysis

...what are the correct cuts to apply to your physics
objects

 It is technical in nature, assuming that you know some C++, explaining
you how to do certain things inside the D0 software framework, but not
what (that's left to you).

Don't run the examples blindly and expect them to do something useful
for you...

4

The D0 Software Environment
The D0 software consists of many components:

External software (root, OpenInventor, python,gcc....)

D0 specific software written by us.

All these pieces are packaged up in so-called
products of the UPD/UPS system.

Some products are supported Fermilab-wide (e.g.
ROOT)

Others are specific to D0

UPS supports multiple sources for products and
allows to install multiple versions of a product at
the same time.

5

UPS and setup

The setup command can be used to make a
certain product available to your session:

setup python
uses the version declared current in UPS configuration.

setup python v2_2_1
uses the specific version you require

setup -t d0tools
uses the version declared the test version in UPS

The typical effect of a setup command is a
change of your PATH and other environment
variables. (type 'env' before and after a setup).

UPS products can depend on each other.

6

Setup a D0 Release
A D0 release is a UPS product depending on many
other UPS products.

Version numbers are like this:
setup D0RunII p13.08.00
setup D0RunII t03.03.00

This is a production release.
13 is the major, 08 the

minorversion of the release.
Major release are done

every three to four months.

This is a test release. The
minor version changes

every week.
Avoid setup D0RunII current
It will set your work environment to the
release du jour, and you will get surprises
the next week if you don't know what
you are doing.

7

Your work area

The area where you are doing your work is
expected to have a certain structure.

You can have as many work areas as you like, but
use only one at a time.

Here is how you create a new one:
% cd /work/wensley-clued0/rhauser
% setup D0RunII p13.08.00
% newrel -t p13.08.00 work
% cd work
% d0setwa

Use the same version number
for setup and newrel

The work directory now has a couple of subdirectories and files.
The hidden file .base_release contains the version number.

Use your own machine
name and user id here !!!

8

Using an existing work area
If you have an existing work area, just do the
setup and d0setwa there:

% cd /work/wensley-clued0/rhauser/work
% setup D0RunII p13.08.00
% d0setwa

If you are switching to a different release version, either create a new
working area and copy things over, or change the .base_release
file and:

% rm -rf bin/* lib/* tmp/* rcpdb/*
% setup D0RunII t03.06.00
% d0setwa

If in doubt, go to your work are and d0setwa again. Usually it won't
hurt and often you have just forgotten it.

9

CVS Packages
The D0 software is structured into many
packages that are under version control via CVS.

To check out an existing package in your work
area:

addpkg -h analysis_tutorial
checks out the head version of the package (may be
untagged and may not work)

addpkg em_evt
checks out the version that corresponds to the release you
have setup

addpkg em_evt v00-15-26
checks out a specific version of the package

10

Package Versions
CVS keeps a revision version for every file;
every change you commit is recorded.

Package versions are a symbolic name that
applies to the whole package, not individual files
inside the package.

You can tag a package (if you have the
permissions):

% cvs rtag analysis_tutorial v01-02-10

These tags are what you have to submit to the release managers to
have your package included in the release.

For a list of package versions for your release, look at:
$SRT_PUBLIC_CONTEXT/D0reldb/inventory

No, you can't tag this specific package if
you're not that the author/responsible

11

Release area and work area
The release area is shared by all users on a
machine and is readonly .

After a setup you can find it when looking at
% ls $SRT_PUBLIC_CONTEXT

Your work area is kept in
% ls $SRT_PRIVATE_CONTEXT

The release area and your work area have a
similar structure.

Whenever the build or run-time system looks for
something, it first checks your local work area,
then the release area !

12

Looking up things...
C++ include files are searched in

$SRT_PRIVATE_CONTEXT/include

then $SRT_PUBLIC_CONTEXT/include

Libraries are searched in
$SRT_PRIVATE_CONTEXT/lib/...

then $SRT_PUBLIC_CONTEXT/lib/...

Binaries are searched in
$SRT_PRIVATE_CONTEXT/bin/...

then $SRT_PUBLIC_CONTEXT/bin/...

RCP files are searched in
$SRT_PRIVATE_CONTEXT/<package>/rcp

then $SRT_PUBLIC_CONTEXT/<package>/rcp

13

Package structure

Every CVS package appears as a subdirectory in
your work area.

The structure of a package is standardized

you can change it but it is easiest to stick with the
default.

% ls analysis_tutorial
CVS/ LIBDEPS GNUmakefile
bin/ rcp/ doc/
analysis_tutorial/ src/

Don't touch
Don't touch

Include files for
your package. Named
after package itself !

C++ source files
for your package.

Executables
for you package

Optional: configuration
data for your package.

Documentation
files

External dependencies

14

More on the package structure

The src directory has a number of magic files that tell the build
system what to do: you don't have to write any Makefiles yourself.

% ls analysis_tutorial/src
COMPONENTS OBJECT_COMPONENTS
AccessChunks.cpp AccessChunks_t.cpp
AccessTrigger.cpp AccessTrigger_t.cpp
Minimal.cpp Minimal_t.cpp
RegMinimal.cpp
[...more of the same...]

Component tests, one
for each of your source files.

Most of
your Code

A special C++ file only needed
for D0 framework programs.

This goes into OBJECT_COMPONENTS

A list of all your .cpp files except component
tests and those in OBJECT_COMPONENTS.
The entries are without the .cpp extensions !

15

Ready to go...

From your work area, type
% make all

to compile and link all packages in your area in the correct
order.

% make clean
to delete and clean up any of the produces object files,
libraries and executables

These are the only commands that are always safe.

If you have modified only one package and you're
sure none of the others needs recompiling, you can do

% make analysis_tutorial.all

16

Optimized Builds

For production code you want to build your
executable with compiler optimizations switched
on.

Setup a release as usual
srt_setup SRT_QUAL=maxopt

executables now go into
bin/Linux2.4-GCC_3_1-maxopt

This is missing after
a normal setup

17

More on LIBDEPS
Originally you had to specify all direct
dependencies on other packages here.

This is no longer necessary, the build system can
figure this out for itself.

The exception are libraries which are not part of
the D0 software, but external UPS packages. To
find the correct header files, you have to put the
package name into LIBDEPS !

e.g. add a line with 'root' if you want to include
headers files from ROOT

It's not always obvious to a beginner what an external
package is...

18

The bin directory

% ls analysis_tutorial/bin
CVS/ BINARIES LIBRARIES
OBJECTS tutorial_x.cpp

A list of binaries
to build, without

the .cpp extension.
Here just 'tutorial_x'.

A list of D0 framework
packages to include in

the binary.
An example would be
the RegMinimal from

the src directory.

Libraries to link the executable
with.Usually just the name of
your own package.

Your main() program if you're building
a simple C++ program. Empty when you're
building a D0 framework program (really...)

This will build an executable tutorial_x and
leave it in the bin directory of your work area.
You can start it by simply typing
tutorial_x ...arguments

19

Some actual source code
#ifndef MINIMAL_HPP_
#define MINIMAL_HPP_

#include <string>

#include "framework/Package.hpp"
#include "framework/interfaces/Flow.hpp"
#include "framework/interfaces/StandAlone.hpp"

namespace edm {
 class Event;
}

namespace d0tutorial {

 class Minimal : public fwk::Package,
 public fwk::Analyze,
 public fwk::JobSummary
 {

[...actual class declaration...]
};

}

#endif // MINIMAL_HPP_

analysis_tutorial/Minimal.hppanalysis_tutorial/Minimal.hpp

Usual header protection

Include all standard headers
that you make use of in your header
itself.

This is how to access other
D0 packages, here one called 'framework'

But don't include classes whose full
declaration you don't need here. Just
forward declare them.

Choose your own namespace
to separate your code
from others and avoid naming
collisisions.

20

D0 framework packages

So far we had UPS products and CVS packages. Now
we introduce a third type of package to maximize
confusion:

A D0 framework package is a C++ class that follows
certain rules and implements certain interfaces.

A single CVS package can contain multiple D0 framework
packages.

The D0 framework contains the actual main() program and
calls your C++ objects according to rules specified in
configuration files.

Your D0 framework package is typically one of many called in the
processing of one event.

By combining existing and new packages you make use of
other peoples code and add your own contributions.

Our example analysis code will be in the form of a D0 framework
package.

21

Back to our header file...

[...]

namespace d0tutorial {

 class Minimal : public fwk::Package,
 public fwk::Analyze,
 public fwk::JobSummary
 {
 public:
 Minimal(fwk::Context *ctx);
 virtual ~Minimal();

 virtual fwk::Result analyzeEvent(const edm::Event& event);

 virtual fwk::Result jobSummary();

 [...stuff omitted here...]

 };
}

analysis_tutorial/Minimal.hppanalysis_tutorial/Minimal.hpp

A class becomes a framework
package by inheriting from certain
base classes. The most basic one
is Package which you always need.
The others each define a virtual routine
that you have to implement.

Your constructor must
look like this.

This virtual function comes
from fwk::Analyze. It is an
example of an interface
that takes an Event as argument.

This virtual function comes from
fwk::JobSummary. It takes no arguments.

22

More things to do....
[...]

namespace d0tutorial {

 class Minimal : public fwk::Package,
 public fwk::Analyze,
 public fwk::JobSummary
 {
 public:

 [...stuff omitted here...]

 virtual std::string packageName() const { return package_name(); }
 static const std::string package_name() { return "Minimal"; }
 static const std::string version() { return "Id"; }
 private:
 bool _debug;
 unsigned int _events_processed;
 };
}

analysis_tutorial/Minimal.hppanalysis_tutorial/Minimal.hpp

You must have these 3 lines
in each of your classes.
The package_name() must
correspond to your class name.

This is the first of our own code:
private member variables that we
are going to use. Note that they are
prefixed by an underscore.

CVS will replace
this with something
else the first time you
checked your code in.

23

Now to the implementation...

#include "framework/Registry.hpp"
#include "edm/Event.hpp"
#include "analysis_tutorial/Minimal.hpp"

namespace d0tutorial {

 FWK_REGISTRY_IMPL(Minimal,"$Name$");

 Minimal::Minimal(fwk::Context *ctx)
 : fwk::Package(ctx),
 fwk::Analyze(ctx),
 fwk::JobSummary(ctx),

 _debug(packageRCP().getBool("Debug")),
 _events_processed(0)
 {
 log()(ELinfo, "Minimal") << "Instance = "
 << instanceName()
 << " created"
 << endmsg;
 }

 Minimal::~Minimal()
 {
 }

[...]
}

src/Minimal.csrc/Minimal.c
pppp

We need this for a macro to
register our package.

We now need the full declaration of
everything that we declared forware
in the header.

This tells the framework that the
implementation of Minimal is here.

We don't care what Context is,
just pass it to all our superclasses.

This issues a log message
with severity level 'info'.

We never use std::cout or
std::cerr directly !

This initializes our member variables.

24

Our interfaces...

namespace d0tutorial {
[...]
 fwk::Result Minimal::analyzeEvent(const edm::Event& event)
 {
 if(_debug) {
 out() << instanceName()
 << " : AnalyzeEvent called"
 << std::endl

 << instanceName()
 << " : RunNumber = "
 << (long)event.collisionID().runNumber()
 << std::endl

 << instanceName()
 << " : EventNumber = "
 << (long)event.collisionID().eventNumber()
 << std::endl;
 }
 ++_events_processed;
 return fwk::Result::success;
 }
[...]
}

src/Minimal.cppsrc/Minimal.cpp

This function is called
for every event.

Another way to
produce output without

using std::cout

Except when filtering (coming later),
always return success here...

Our first access to an event !!!

Notice that the Event
is const: you are not

supposed to modify it.

25

The final touch...

namespace d0tutorial {
[...]
 fwk::Result Minimal::jobSummary()
 {
 out() << packageName()
 << '/' << instanceName()
 << " : processed "
 << _events_processed
 << " events" << std::endl;
 return fwk::Result::success;
 }

[...]
}

src/Minimal.cpsrc/Minimal.cp
pp

This function is called
once per job.
It takes no parameters.

You typically use it to print
summary information.

#include "framework/Registry.hpp"

namespace d0tutorial {

 using namespace fwk;
 FWK_REGISTRY_DECL(Minimal)
}

src/RegMinimal.cppsrc/RegMinimal.cpp

Just follow this magic recipe
for every framework package
you write.

We're done with our first
framework program !

26

Interfaces again...

There are many interfaces defined for various
tasks, some with, some without parameters.

Just follow the same approach we have used here

We will make use of only a few; we will ignore all
interfaces which typically modify an event (that's what
you use in d0reco).

Only filterEvent(const edm::Event&) is
special in that returning failure instead of
success will not terminate the program, but just end
the processing of this event.

27

Configuration with RCP

RCP files are text files where parameters are
stored.

RCP has an underlying database (also text based
at the moment).

Any program can make use of the RCP database
and extract parameters out of it.

Framework packages need some special entries in
the RCP files which tell it how to put the pieces
together.

28

Simple RCP example

 Minimal::Minimal(fwk::Context *ctx)
 : fwk::Package(ctx),
 fwk::Analyze(ctx),
 fwk::JobSummary(ctx),

 _debug(packageRCP().getBool("Debug")),
 _events_processed(0)
 {
 [...]
 }

src/Minimal.cppsrc/Minimal.cpp

this is a comment
// this is a comment, too

string PackageName = "Minimal"

bool Debug = true

float anArray = (1.0, 2.0, 5.6)

rcp/minimal.rcprcp/minimal.rcp

This tells the framework
to construct an object of type
Minimal.

The other entries are
the parameters for our
package.

Inside our package we have
access to a method packageRCP()
that returns an object which we
can use to access the parameters.

The RCP object has methods
for every datatype that can
be used in the RCP file.

29

The framework RCP
string InterfaceName = "process"

string Packages = "read minimal"

RCP read = <io_packages ReadEvent>
RCP minimal = <analysis_tutorial minimal>

rcp/runMinimal.rcprcp/runMinimal.rcp

Required for framework RCP

The list of framework
packages to run.

For each package, the RCP file
that contains the package parameters.

This will be the
instanceName() that
we print out in our code

% tutorial_x -rcp analysis_tutorial/rcp/runMinimal.rcp \
 -input_file recoT_all_0000163972_mrg_200-204.raw_p13.06.01

This is an existing package
to read events.

We are ready to run !

Our executable name Name of the framework RCP file, required

A thumbnail file

30

Some notes...

Our program will run on reco output, DST and
thumbnail files.

This is because we don't access any of the
information inside the event, only the event
number and run number...

For thumbnail files we will need additional
packages after the reading to have the data in the
format we want it.

To understand this we have to know how Events
are stored in memory.

31

D0OM

d0om is D0's persistency mechanism.

With a few lines of code you can make any C++
class persistent, i.e. you can store objects of the
class in a file and retrieve them later.

All raw, reco, DST and thumbnail files are d0om
files.

E.g. the ReadEvent package that we used in our
first example can read d0om files and insert them
into the data flow of the framework so that they
can be processed by the other packages.

32

Event Data Model (EDM)
The EDM defines the representation of events in
memory.

What is contained in an event

How to add new data to an event (e.g. during
reconstruction)

How to access specific data in an event

It keeps track of dependencies between parts of the
event (e.g. which other parts were used to create the
tracks in this one)

It keeps track of which RCP parameters were used in
the creation of a certain part of an event.

33

EDM (2)

The smallest unit of an Event that the EDM
knows of is called a 'Chunk'.

Different Chunks contain different types of data
(e.g. a JetChunk contains jets, a
MuonParticleChunk muons...)

An event can contain more than one chunk of the
same type at the same time (e.g. each jet reco
algorithm produces a JetChunk, but with different
parameters)

Chunks are the units that can be inserted, deleted
etc. in an event.

34

Using the EDM

#include "framework/Registry.hpp"
#include "edm/Event.hpp"
#include "analysis_tutorial/AccessChunks.hpp"
[...]
#include "muonid/MuonParticle.hpp"
#include "muonid/MuonParticleChunk.hpp"
[...]

void AccessChunks::access_muon(const edm::Event& event)
{
 using namespace edm;
 using namespace muonid;

 typedef std::vector<MuonParticle>::const_iterator const_iterator;

 TKey<MuonParticleChunk> key;
 THandle<MuonParticleChunk> handle = key.find(event);

 if(handle.isValid()) {
[...do something with handle...]

 }
}

src/AccessChunks.cppsrc/AccessChunks.cpp

Include the header files
for the physics object type
and chunks you're interested in

Most classes live
in a separate namespace.

Define a key for the Chunk

Use the key to find the chunk.

See if we were successful. If yes
use the chunk...

35

Accessing Muons...
void AccessChunks::access_muon(const edm::Event& event)
{
 [...]

 if(handle.isValid()) {
 const std::vector<MuonParticle> *particles = handle->getParticles();
 for(const_iterator it = particles->begin();
 it != particles->end();
 ++it) {

 const MuonParticle& obj = *it;

 float pT = obj.pT();

 const MuonQualityInfo *quality = obj.qualInfo();

 int nhit = quality->nhit();
 int nseg = quality->nseg();
 } // for

 } // if (handle.isValid())
}

src/AccessChunks.cppsrc/AccessChunks.cpp

Get the list of muon objects.

Iterate over muons

Use a shortcut to access the muon

Work with the Muon qualities
some are in a separate object
called MuonQualityInfo

36

Accessing tracks
void AccessChunks::access_tracks(const edm::Event& event)
{
 using namespace edm;
 using namespace vertex;
 typedef std::vector<ChargedParticle>::const_iterator const_iterator;

 TKey<ChargedParticleChunk> key;
 THandle<ChargedParticleChunk> handle = key.find(event);

 if(handle.isValid()) {
 const std::vector<ChargedParticle> *particles = handle->getParticles();

 for(const_iterator it = particles->begin();
 it != particles->end();
 ++it) {
 const ChargedParticle& obj = *it;

 float pT = obj.pT();
 [...]
 }
 }
}

src/AccessChunks.cppsrc/AccessChunks.cpp

Follow the same structure for every chunk where you expect
only one chunk of a given type per event....

37

Missing ET
void AccessChunks::access_met(const edm::Event& event)
{
 using namespace edm;
 // there is no namespace missingET...

 TKey<MissingETChunk> key;
 THandle<MissingETChunk> handle = key.find(event);
 if(handle.isValid()) {

 // Note: no 'const' qualifier here...
 MissingET *met = handle->getMissingET();

 float MET = met->getMET();
 float scalarET = met->getScalarET();

 _met->Fill(MET); // fill histogram
 }
}

src/AccessChunks.cppsrc/AccessChunks.cpp

There are no particles here,
but only a single object.
It should be const, but isn't, so
in principle you can change it...
Don't do it, this is a design error
in the MissingET class.

38

Accessing EM particles
[...]
#include "edm/TKey.hpp"

namespace edm {
 class Event;
}

namespace emid {
 class EmparticleChunk;
}
[...]
namespace d0tutorial {

 class AccessChunks : public fwk::Package,
 public fwk::Analyze,
 public fwk::JobSummary
 {
 private:
 edm::TKey<emid::EMparticleChunk> _emKey;
 [...]
 };
}

analysis_tutorial/AccessChunks.hppanalysis_tutorial/AccessChunks.hpp

We now need the Tkey header file here.

We still do not need the chunk definition !

A key that we will initialize
and reuse.

39

Initializing the TKey from RCP
#include "em_evt/EMparticleChunkSelector.hpp"
[...]
AccessChunks::AccessChunks(fwk::Context *ctx)
 [...]
{
 using namespace edm;
 using namespace std;
 using namespace emid;

 RCP rcp = packageRCP();

 // Initialize key for selecting the correct EM chunk
 RCP emidAlgoRCP = rcp.getRCP("EMid_Algo");
 vector<string> emidNestedRCP = rcp.getVString("EMid_SearchRCPs");

 EMparticleChunkSelector emAlgoSel(emidAlgoRCP,emidNestedRCP);
 _emKey = edm::TKey<emid::EMparticleChunk>(emAlgoSel);

 [...]
}

src/AccessChunks.cppsrc/AccessChunks.cpp

string PackageName = "AccessChunks"
[...]
RCP EMid_Algo = < emreco EMReco-scone-id >
string EMid_SearchRCPs = ("clusterer","HMReco",)

rcp/chunks.cpprcp/chunks.cpp

This selects the
simple cone algorithm

This retrieves the
algorithm parameter
from the RCP file.

This initializes the
TKey with a EM
specific Selector object.

40

The rest is business as usual...
void AccessChunks::access_em(const edm::Event& event)
{
 using namespace edm;
 using namespace emid;

 typedef std::vector<EMparticle>::const_iterator const_iterator;
 THandle<EMparticleChunk> handle = _emKey.find(event);
 if(handle.isValid()) {
 const std::vector<EMparticle> *particles = handle->getParticles();
 for(const_iterator it = particles->begin(); it != particles->end(); ++it) {
 const EMparticle& obj = *it;
 int id = abs(obj.typeID());

 if(id == 10 || id == 11) {
 float pT = obj.pT();
 float eta = obj.eta();

 float hm8 = obj.HMx8();
 float isolation = obj.isolation();
 float em_fraction = obj.emfrac();

 if(obj.has_track_match()) {
 float chi2 = obj.track_match_chi2prob();
 // get best track
 const vertex::ChargedParticle *track = obj.getPtrChp();
 }
 }
 }
 }

src/AccessChunks.cppsrc/AccessChunks.cpp

Use the initialized member variable here

Restrict yourself to the methods
marked as user interface....
This is new after p13.xx.xx !

41

Similar for JetChunk
AccessChunk::AccessChunk(fwk::Context *ctx)
[...]
{
[...]
 string jetType = rcp.getString("JetAlgo_type");
 vector<float> jetValues = rcp.getVFloat("JetAlgo_values");
 vector<string> jetNames = rcp.getVString("JetAlgo_names");

 if (jetValues.size() != jetNames.size()) {
 log()(ELerror, "JetAlgoSelection")
 << "Inconsistent RCP values for the jet selection, disable it"
 << endmsg;
 jetNames.clear();
 jetValues.clear();
 }

 jetid::JetAlgoInfo jetAlgoInfo(jetType,jetValues,jetNames);
 _jetKey = Tkey<JetChunk>(JetChunkSelector(jetAlgoInfo));

src/AccessChunks.cppsrc/AccessChunks.cpp

string PackageName = "AccessChunks"
[...]
string JetAlgo_type = "PreSCilcone"
string JetAlgo_names = ("towers" "coneSize" "Radius_of_Cone" "Min_Jet_ET")
float JetAlgo_values = (0. 0.3 0.5 8.)

rcp/chunks.cpprcp/chunks.cpp

Jet chunks are
described by a set
of parameter names
and values plus the
algorithm type

42

Rest as usual...
 void AccessChunks::access_jet(const edm::Event& event)
 {
 using namespace edm;
 using namespace jetid;

 typedef std::vector<Jet>::const_iterator const_iterator;

 THandle<JetChunk> handle = _jetKey.find(event);

 if(handle.isValid()) {
 const std::vector<Jet> *particles = handle->getParticles();

 for(const_iterator it = particles->begin();
 it != particles->end(); ++it) {
 const Jet& obj = *it;

 float pT = obj.pT();
 float emfraction = obj.emETfraction();
 float hotcellration = obj.hotcellratio();
 int n90 = obj.n90();

 }
 }
 }

src/AccessChunks.cppsrc/AccessChunks.cpp

Use the
predefined key

43

Relationships between Chunks

A chunk can contain objects that in turn can contain
pointers to other objects etc.

An object in one chunk may not contain a pointer to
an object in another chunk. Otherwise the two would
be strongly tight together: you couldn't read/write
them independently !

If you want to reference an object in another chunk
you have to go through an intermediate step: chunks
only store an index to objects in other chunks which
can be converted into pointers before you use them.

44

Example: Finding track matches

void AccessChunks::access_em(const edm::Event& event)
{
 using namespace emid;

 const EMparticle::ChpIndices& tracks = obj.chpindices();
 for(EMparticle::ChpIndices::const_iterator it = tracks.begin();
 it != tracks.end();
 ++it) {

 LinkPtr<ChargedParticleChunk,ChargedParticle> trk(*it);

 // Check whether this is a valid pointer to a track
 if (trk.isValid()) {
 float momentum = trk->p();
 }
}

src/AccessChunks.cppsrc/AccessChunks.cpp

This is a really a
vector of LinkIndex
objects

This turns the index
into a pointer like
object...

Then we just use it like
a pointer to ChargedParticle

We first have to check
if the conversion succeeded

45

Other chunks in the event

More physics objects not covered here: bcJets,
Taus

Global information: state of the various magnets,
luminosity block number

Trigger information

TMBTriggerChunk (in thumbnail files)

L3Chunk

L1L2Chunk
L1 cal, muon, ctt, trigger framework

All L2 global and preprocessor objects

46

ID Group Corrections

The various Physics ID group produce certified
cuts and corrections which you can/should apply
to the data.

We look at the Muon ID, EM ID and Jet Energy
Scale corrections.

Each one uses a different approach...

Some of them work exactly the same when using
TMBTrees, others differ in their initialization.

The following examples are for framework
programs only...

47

EM ID Corrections
string InterfaceName = "process"

string Packages = "geo read config unptmb mucand em1 em2 analyze"
[...]
RCP em1 = <emreco EMReco-scone-postprocess>
RCP em2 = <emreco EMReco-cnn-postprocess>

RCP mucand = <analysis_tutorial MuoCandReco>

RCP analyze = <analysis_tutorial corrections>

rcp/runCorrections.cpprcp/runCorrections.cpp

Add these two
packages before your
analyze packageThat's it !

From now on we are using the corrected values.

Caveat: as of Feb 11, 2003 you have to check out 11 packages
by hand and compile them locally in your work area.

48

Muon ID Corrections
Void AccessCorrections::muo_cand(const edm::Event& event)
{
 using namespace edm;
 using namespace muonid;
 typedef MuoCandidateVectorD0OM::const_iterator const_iterator;

 TKey<MuoCandidateChunk> key;
 THandle<MuoCandidateChunk> handle = key.find(event);

 if(handle.isValid()) {
 int nTight = 0;
 const MuoCandidateVectorD0OM& particles = handle->getMuoCandidates();
 for(const_iterator it = particles.begin(); it != particles.end(); ++it) {
 const MuoCandidate& obj = *it;
 float pT = obj.pT();
 float pTcorr = obj.pTCorr();

 int whitsA = obj.whitsA();
 int whitsBC = obj.whitsBC();
 int shitsA = obj.shitsA();
 int shitsBC = obj.shitsBC();

 if(obj.isTight()) nTight++;
 }
 }
}

src/AccessCorrections.cppsrc/AccessCorrections.cpp

A new chunk type !

New methods

These would be useful
with the original
MuonParticle as well...

Add MuoCandReco
to your framework
RCP (see previous
slide) and include
MuoCandidateChunk

muo_cand is not in a
release. You have to
check it out by hand and
compile it locally.

49

JES Corrections
#include "jetcorr/ParticleJetCorr.hpp"
[...]
Void AccessCorrections::jet_corr(const edm::Event& event)
{
 using namespace edm;
 using namespace jetid;
 typedef vector<Jet>::const_iterator const_iterator;
 THandle<JetChunk> handle = _jetKey.find(event);

 int cone_type = check_jet_type(handle);
 if(cone_type == 0) return;

 if(handle.isValid()) {
 const std::vector<Jet> *particles = handle->getParticles();
 for(const_iterator it = particles->begin(); it != particles->end(); ++it) {
 const Jet& obj = *it;
 // last 2 arguments:
 // 1 = RunII 0.7 cone jet, 2 = 0.5 cone
 // 0 = Data, 1 = mixture MC, 2 == plate MC
 ParticleJetCorr pjc(obj.E(), obj.eta(), obj.detEta()/10, cone_type, 0);
 pjc.calc();
 float C, dCstat, dCsys;
 double Enew;
 pjc.forJets(&C, &dCstat, &dCsys, &Enew);
 float deltaET;
 pjc.forMET(&deltaET);
 }
 }
}

src/AccessCorrections.cppsrc/AccessCorrections.cpp

Only available for certain
jet types. RunII 0.5/0.7 cone

JES code doesn't
know anything about
D0 framework. Same
code can be used in root.

50

What chunks are in a file ?

In the previous examples we accessed various chunk
types.

None of them exists in a thumbnail file !
Chunks can be created on-the-fly and be used to pass
information from one package to another.

All the uncorrected chunks exist in reco output:
EMparticleChunk, JetChunk, MissingETChunk,
MuonParticleChunk

When reading a thumbnail file, these chunks are
recreated on the fly to look (almost) like reco output.

The code we wrote will work on reco and DST files as well
!

51

Thumbnail Unpacking
Thumbnail files have only ThumbnailChunk,
TMBTriggerChunk, L1L2Chunk, HistoryChunk (+
MC...)

All our other chunks are created by the thumbnail
unpacker; however, some information may be missing
compared to reco output !

You never access ThumbnailChunk itself !

string InterfaceName = "process"

string Packages = "geo read config unptmb mucand em1 em2 analyze"
[...]
RCP geo = <geometry_management geometry_management>
RCP read = <io_packages ReadEvent>
RCP config = <run_config_fwk RunConfigPkg>
RCP unptmb = <thumbnail UnpThumbNail>
[...]

rcp/runCorrections.cpprcp/runCorrections.cpp

This package does
the necessary unpacking.
Just leave it out for DST
or reco files !

52

Controlling Unpacking
In many cases the thumbnail unpacking dominates your total
processing time !

You can selectively turn off the unpacking of chunks you
don't use, e.g. if you are making some simple cuts.

Be careful, since some of the corrections require access to
more than one chunk (e.g. the muon ID corrections needs
jets, tracks etc.)

string PackageName = "UnpThumbNailPkg"
[...]

bool doCps=true
bool doFps=true
bool doVtx=true
bool doChp=true
bool doEM=true
bool doMuon=true
bool doTau=true
bool doJet=true
bool doMET=true
bool doL3=true
bool dobcJet=true
bool doRecomputeBC=true
[...]

thumbnail/rcp/UnpThumbNail.rcpthumbnail/rcp/UnpThumbNail.rcp

Example: When doing thumbnail
skimming the B physics group uses only muons:
they can process 80 event/s compared to 20 events/s
when unpacking everything.

53

Accessing Trigger Information

#include "run_config_fwk/TMBTriggerChunk.hpp"
[...]
void AccessTrigger::access_triggers(const edm::Event& event)
{
 using namespace edm;

 TKey<TMBTriggerChunk> key;
 THandle<TMBTriggerChunk> handle = key.find(event);

 if(handle.isValid()) {

 // Get the trigger list
 _triggers = handle->getTrigList();

 // Get the luminosity block number for this event
 const thumbnail::Global& global = handle->global();
 _luminosity_block_numbers.insert(global.get_lumblk());

 } else {
 // make sure the list is empty
 _triggers.clear();
 log()(ELwarning, "access_trigger")
 << "No TMBTriggerChunk found" << endmsg;
 }
}

src/AccessTrigger.cppsrc/AccessTrigger.cpp

For thumbnails use the TMBTriggerChunk to get trigger information:
you can do this before unpacking the other chunks !

A list of trigger names

We save every luminosity
block number that we
encounter...

54

Checking if a trigger fired

bool AccessTrigger::trigger_fired(const std::string& trigger)
{
 return (std::find(_triggers.begin(), _triggers.end(), trigger) != _triggers.end());
}

bool AccessTrigger::trigger_fired(const std::vector<std::string>& trigger_list)
{
 using namespace std;

 for(vector<string>::const_iterator it = trigger_list.begin();
 it != trigger_list.end();
 ++it) {
 if(trigger_fired(*it)) return true;
 }
 return false;
}

src/AccessTrigger.cppsrc/AccessTrigger.cpp

Checking if a single trigger or one out of a list of triggers fired is now
trivial:

55

Filtering Events
class AccessTrigger : public fwk::Package,
 public fwk::Filter,
 public fwk::Analyze,
 public fwk::JobSummary,
 public fwk::FileClose
{
public:
 AccessTrigger(fwk::Context *ctx);
 virtual ~AccessTrigger();

 virtual fwk::Result filterEvent(const edm::Event& event);
 virtual fwk::Result fileClose(const fwk::FileInfo& info);
[...]

analysis_tutorial/AccessTrigger.hppanalysis_tutorial/AccessTrigger.hpp

fwk::Result AccessTrigger::filterEvent(const edm::Event& event)
{
 ++_events_read;

 access_triggers(event);

 if(_user_triggers.size() > 0 && !trigger_fired(_user_triggers)) {
 return fwk::Result::failure;
 } else {
 ++_events_passed;
 return fwk::Result::success;
 }
}

src/AccessTrigger.cppsrc/AccessTrigger.cpp

Two new interfaces
we implement

This is one of the
places where we can
return failure. The
rest of the processing
will be skipped.

This variable is read
from a RCP file

56

Reuse existing code

The example only works on thumbnails.

It doesn't allow you to use L3 information

There already exists a package that implements all
this including checks for Monte Carlo data:

analysis_utilities/D0TriggerFilter.hpp
use this when you want to filter or tag events

analysis_utilities/D0TriggerDecoder.hpp
use this when you want to have access to the trigger
information

We make use of this later, but don't go into details
here...(see Marco's tutorial).

57

Accessing L1 Results
void AccessTrigger::access_l1l2(const edm::Event& event)
{
 using namespace edm;

 TKey<L1L2Chunk> key;
 THandle<L1L2Chunk> handle = key.find(event);

 if(handle.isValid()) {

 // Access L1 Calorimeter information
 l1cal_reco l1cal = handle.ptr()->Ret_l1cal();

 int i = 0;
 float l1_total = l1cal.l1cal_tot(i);
 float l1_em = l1cal.l1cal_em(i);
 float l1_eta = l1cal.l1cal_tot_eta(i);
 float l1_phi = l1cal.l1cal_tot_phi(i);

 // Access L1 CTT information
 l1ctt_reco l1ctt = handle.ptr()->Ret_l1ctt();

 for(int i = 0; i < l1ctt.trk_size(); i++) {
 _l1_ctt->Fill(l1ctt.l1trk_pt(i));
 }
[...]

src/AccessTrigger.cppsrc/AccessTrigger.cpp

Both L1 and L2
information is
in the L1L2Chunk.

We look at the leading
tower in the L1 CAL here

58

Accessing L2 Results
// We start with the global EM objects
vector<l2gblEMObj_reco> l2em_objs = handle.ptr()->Ret_l2gblEMObj();

if(l2em_objs.size() > 0) {

 for(vector<l2gblEMObj_reco>::iterator it = l2em_objs.begin();
 it != l2em_objs.end();
 ++it) {
 float pT = (*it).pt();
 _l2_em->Fill(pT);
 }

 // Plot difference between leading tower and L2 EM object
 // with highest pT
 _l1l2_diff->Fill(l2em_objs[0].pt() - l1_total);
 _l1l2_eta->Fill((l2_eta(l2em_objs[0].ieta())- l1_eta);

 float delta_phi = fabs(l2_phi(l2em_objs[0].iphi()) - l1_phi);
 if(delta_phi > M_PI/2) delta_phi -= M_PI/2;
 _l1l2_phi->Fill(delta_phi);

[...mercifully skipped here: how to access preprocessor objects...]

src/AccessTrigger.cppsrc/AccessTrigger.cpp

L2 eta and phi use
their own internal
coordinate system !!

float l2_eta(int eta)
{
 return eta * 8.0/160 - 4.0;
}

float l2_phi(int phi)
{
 return phi * 2 * M_PI/160;
}
src/AccessTrigger.cpsrc/AccessTrigger.cp
pp

59

Accessing L3 Results
void AccessTrigger::access_l3(const edm::Event& event)
{
 using namespace edm;

 THandle<L3Chunk> handle = _l3Key.find(event);
 if(handle.isValid()) {
 typedef L3Chunk::L3ChunkPhysToolMap::const_iterator map_iterator;
 const L3Chunk::L3ChunkPhysToolMap& tool_map = handle->getPhysToolMap();

 // Loop over all tools
 for(map_iterator tool = tool_map.begin();
 tool != tool_map.end();
 ++tool) {
 // Loop over list of results

 for(std::list<L3PhysicsResults*>::const_iterator it = (*tool).second.begin();
 it != (*tool).second.end();
 ++it) {

 if(L3PhysicsResults *result = *it) {
 use_l3_result(result);
 }
 }
 }
 }

src/AccessTrigger.cppsrc/AccessTrigger.cpp

There are maps for
filters and tools.

An entry in the map
contains the name of the tool
and a list of results.

60

Using L3 PhysicsResults

void AccessTrigger::use_l3_result(L3PhysicsResults *result)
{
 float detEta = result->get_detectorEta();
 float Et = result->get_ET();
 if(L3ElePhysicsResults *ele = dynamic_cast<L3ElePhysicsResults*>(result)) {
 float emfrac = ele->get_emFraction();
 float isolation = ele->get_isolation();
 if(ele->PsMatch()) {
 const L3CPSCluster& cluster = ele->get_PsCluster();
 }
 } else if(L3JetsPhysicsResults *jet = dynamic_cast<L3JetsPhysicsResults*>(result)) {
 float emETfrac = jet->get_emETfraction();
 float hotcellreation = jet->get_hotcellratio();

 } else if(L3MuonPhysicsResults *muon = dynamic_cast<L3MuonPhysicsResults*>(result)) {
 int missA = muon->get_nhitmissA();
 int missBC = muon->get_nhitmissBC();

 } else if(L3TauPhysicsResults* tau = dynamic_cast<L3TauPhysicsResults*>(result)) {
 float emfrac = tau->get_emFraction();
 float isolation = tau->get_isolation();

 } else if(L3MEtPhysicsResults *met = dynamic_cast<L3MEtPhysicsResults*>(result)) {
 [...]
 } else {
 log()(ELwarning, "L3_result") << "Unknown l3 type"
 << result->get_name() << endmsg;
 }
}

src/AccessTrigger.cppsrc/AccessTrigger.cpp

You have to cast this pointer to
a subclass of L3PhysicsResults

Some methods are common

61

Putting things together...
We now have seen examples of how to access
most kinds of data.

Now you can write your package to do all the
filtering, cuts, analysis you want....

However:

Do not reinvent the wheel.

Many of the things you need are already available in
one form or the other

We go through a list of useful framework packages:
reading, filtering, tagging, writing, using SAM, producing
TMBTrees.

62

ReadEvent

Source: io_packages

bin/OBJECTS: ReadEvent

Many of its RCP options can be overridden on the
command line !

Means: add this to your
OBJECTS file if you want
to use the package

// Allowed formats for input file names and lists.
//
// 1. A single filename.
// 2. A wildcard filename.
// 3. A space-separated list of files or wildcards.
// 4. An rcp vector of filenames or wildcards: ("file1" "file2")
// 5. A list file (e.g. listfile:mylist.dat)
//
// Command line overrides (only for first ReadEvent package).
//
// RCP parameter Command line option
//-------------------------------------
// InputFile -input_file <file>
// SkipEvents -skip_events <n>
// NumEvents -num_events <n>
// MaxEventsPerFile -per_input_file <n>
// NumFiles -num_files <n>
// OnlyCollids -only_collids <run1> <event1> <run2> <event2> ...
// SkipCollids -skip_collids <run1> <event1> <run2> <event2> ...
// OnlyRuns -only_runs <run1> <run2> ...
// SkipRuns -skip_runs <run1> <run2> ...

io_packages/rcp/ReadEvent.rcpio_packages/rcp/ReadEvent.rcp

Use this for good/bad
run selection, e.g.
for missing ET.

Useful if program
crashes on certain
events

This is the one you
want for testing...

All the options
for specifying
input files

63

D0TriggerFilter

Source: analysis_utitilies

bin/OBJECTS: RegD0TriggerFilter
string PackageName = "D0TriggerFilter"

string Usage = "Filter"

string InputMode = "List"
string Triggers = ("EM_HI" "EM_HI_2CEM5")
[...]

// Trigger decoder configuration.
RCP TriggerDecoder = <analysis_utilities D0TriggerDecoder>

analysis_utilities/rcp/D0TriggerFilter.rcpanalysis_utilities/rcp/D0TriggerFilter.rcp

This will filter events
bases on the specified
trigger names. The
package can also tag
events.

// Chunk used for extracting the list of the L3 triggers
// fired in the event (L3Chunk or TMBTriggerChunk). The
// latter is available only when reading the thumbnail,
// but it can be decoded without decoding the rest of the
// event. NB: the TMBTriggerChunk does not contain mark
// and pass triggers.
string useChunk = "TMBTriggerChunk"

// Enable or disable trigger cuts on MC events.
bool MCtrigger = false

analysis_utilities/rcp/D0TriggerSelector.rcpanalysis_utilities/rcp/D0TriggerSelector.rcp

This references
a second RCP file
that specifies how
to decode the trigger
information

There are many more
options. Look at
the commented RCP
file

64

Tagging an event...

Any package can add an arbitrary label called a Tag to
an event (even if the Event is const !)

This can be used to tell other packages further down
the processing chain which events they should
consider.

You can apply tags to specific chunks as well.
 // tagging an event is trivial
 if([my complicated condition is true])
 event.tag(“MyTag”);

[...in another package...]

// checking for tags, too
 edm::TagCollection tags;
 tags.push_back(“MyTag”);
 if(event.hasTag(tags)) {
 // do something with even
 }

65

Applying cuts to objects

A common task is to apply your own cuts to objects,
then write out the interesting events.

You know how to hard-code the cuts in the code
but every change requires recompilation

You know how to use RCP to parameterize the values
of your cuts

but that doesn't allow you to change the condition itself

The ObjectTag package allows you to tag an event
based on cuts that you specify in an RCP file.

No recompilation required, easy change of cuts

Variants of this approach are uses in the tmb skimming of
at least three physics groups.

It is not infinitely flexible, though. If you reach its limits,
you have to code things yourself.

66

ObjectTag
Source: np_tmb_stream

bin/OBJECTS: RegObjectTag
can use EMparticle, MuonParticle, Jet, MissingET,
MuoCandidate in selection

string PackageName = "ObjectTag"

// the tag to produce for the event
string Tag = "2EM"

// list of trigger names,
// empty means no trigger selection applied
string Trigger = ("EM_HI")

// The list of cuts to apply
string Cuts = ("Cut1" "Cut2")

string Cut1 = ("EM" "Pt > 15.0 && AbsEta < 2.4 && emfrac > 0.9 && isolation < 0.15")
string Cut2 = ("EM" "Pt > 10.0 && emfrac > 0.9")

// EM id algorithm to use for key

string EMid_SearchRCPs = ("clusterer","HMReco",)

np_tmp_stream/rcp/cut1.rcpnp_tmp_stream/rcp/cut1.rcp

This uses D0TriggerSelector
internally, independent of
filtering.

Your list of cuts

The conditions for
your cuts.

This is the tag
added to the event
if it passes the cuts.

You can actually mix and
match object types

67

WriteEvent

Source: io_packages

bin/OBJECTS: WriteEvent
Writes events in d0om format. Again lots of options.
Understands tags for events and/or chunks !

// 1. A single filename.
// 2. A wildcard filename (can only overwrite existing).
// 3. A space-separated list of files or wildcards.
// 4. An rcp vector of filenames or wildcards: ("file1" "file2")
// 5. A list file (e.g. listfile:mylist.dat)
// 6. A filename pattern (a string containing a percent (%) expression).
// The following percent expressions are recognized:
// %n - File sequence number (starts at zero, and is incremented each time
// a new filename is generated).
// %f - Current input filename (not including directory).
// %e - Current input file extension (final '.' and succeedding chars.).
// %r - Current input file root name (name minus extension & directory).
// %d - Current input file directory.
// %D - A string representing the current date (ddmmmyyyy).
// %T - A string representing the current time (hhmmss).
//
// RCP parameter Command line option
//-------------------------------------
// OutputFile -output_file <file>
// MaxEventsPerFile -max_per_file <n>

io_packages/rcp/WriteEvent.rcpio_packages/rcp/WriteEvent.rcp

68

Using SAM

Source: sam_manager

bin/OBJECTS: RegSAMManager
Just insert it before ReadEvent

Enable/disable it by changing the UseSAM flag in the RCP
file if you want to just leave it there, or

remove it from the package list if you don't need it

See this afternoon tutorial for more about SAM !

69

Generating TMBTrees

Source: tmb_analyze/tmb_tree/thumbnail

bin/OBJECTS:
RegLinkedPhysObjReco

RegTMBTreePkg

RegTMBCorePkg

RegTMBBCJetPkg

RegTMBTreeMCPkg

RegTMBTRefsPkg
string Packages = "geo read config unptmb [...your packages...] links tmb_tree
 tmb_core tmb_bcjet tmb_mc tmb_refs"
[...]
RCP unptmb = <thumbnail UnpThumbNail>
RCP links = <linked_physobj LinkedPhysObjReco>
RCP tmb_tree = <tmb_tree_maker TMBTreePkg>
RCP tmb_core = <tmb_tree_maker TMBCorePkg>
RCP tmb_bcjet= <tmb_bcjet TMBBCJetPkg>
RCP tmb_mc = <mc_analyze TMBTreeMCPkg>
RCP tmb_refs = <tmb_analyze TMBTRefsPkg>

tmb_analyze/rcp/runTMBTreeMaker.rcptmb_analyze/rcp/runTMBTreeMaker.rcp

This basically
puts TMBAnalyze_x
into your program...

70

Luminosity

Every event has a luminosity block number associated
with it.

This block number changes (at least) every 60
seconds.

It references entries in a database and can be used to
check if this was a good luminosity block or not (if
not, don't use it in your analysis !)

To calculate the luminosity for your trigger you must
have the list of all luminosity blocks of all the data
from which your final sample was taken !!!

=> Somebody must keep track of this when you/your
physics group skims events !!!

71

Preferred solution: use SAM
SAM can find the luminosity block number range for
you original sample since it keeps track of the
parentage of files

� raw data file (in SAM)
� reco file (in SAM)
� thumbnail file (in SAM)
� skimmed thumbnail (if stored back into SAM !!!)

user skimmed file (usually on your work disk !!!)

Note that each level might have merged multiple
input files, so there is no 1-to-1 correspondence !

You have to be careful to keep track of the last step !
Remember those datasets are constantly growing...

72

Caveat

It seems that every group that does thumbnail
skimming uses a slightly different approach to keep
track of this numbers; so I won't go through any of
these...

However, the idea is always the same: keep track of all
luminosity block numbers that are encountered during
a skim and make them available with the final sample.

Alternatively, keep the filenames of the last set of inputs that
is stored in SAM

It is often straightword to modify the root macros
provided by the luminosity group to use the custom
format; and your physics group should have already
done it.

73

lm_access_pkg

Source: lm_access_pkg

bin/OBJECTS: RegLmAccess
string PackageName = "LmAccess"

// this directory contains files with luminosity block numbers
string parentage_path = "$SRT_PRIVATE_CONTEXT/lbns"

string lumfile = "my_summary.lum"

// what kind of luminosity is this? Reconstructed includes offline checks,
// Recorded is what was taken online. For p13, Recorded is probably fine.
string lm_type = "Recorded" //Triggered, Recorded,
 // Reconstructed, ReconstructedDontCheckL3

// if reconstructed, what kind of data?
string filetype = "thumbnail" // unknown, raw, reconstructed, roottuple, thumbnail

string goodRunsList = "goodrunslist"
string badRunsList = "none"

bool filterBadRuns = true // Don't even look at events from bad runs
string triggers = ("EM_HI_2EM5" "EM_HI_2EM5_EMFR8" "EM_HI_2EM5_SH"
 "EM_HI_2EM5_SH_TR" "EM_HI_2EM5_TR" "EM_HI" "EM_HI_EMFR8"
 "EM_HI_SH" "EM_HI_SH_TR" "EM_HI_TR" "EM_MX" "EM_MX_EMFR8"
 "EM_MX_SH" "EM_MX_TR" "2EM_HI")

lm_access_pkg/rcp/LmAccess.rcplm_access_pkg/rcp/LmAccess.rcp

74

Example: NP skims

1.We want to run over the di-em sample (which is
mostly in SAM)

2.Run a script from the lm_access package to generate
the parentage files

� makeDimensionParentageList.py
'data_tier thumbnail-bygroup and
file_name 2em%p1305%'

3.Put the directory location into parentage_path (see
previous slide)

4.Put lm_access_pkg into your framework RCP

5.Run over the specified data set
� each file we encounter should have a corresponding

parentage file from step 2

75

Output

Output looks something like this (didn't use
good/bad run lists and ran over small sample):

% cat my_summary.lum
 Luminosity summary
/rooms/dining/ethomas/np_skims/p13.04.00/2mu/01-DEC-2002/2mu_p130400_Dec01_ID12184
 End of Job Summary
LmType : Recorded
Filetype :thumbnail
 EM_HI_2EM5 = 6098.13 mub-1 Good Events: 0 Bad Events: 0
 EM_HI_2EM5_EMFR8 = 6098.13 mub-1 Good Events: 0 Bad Events: 0
 EM_HI_2EM5_SH = 6098.13 mub-1 Good Events: 0 Bad Events: 0
 EM_HI_2EM5_SH_TR = 6098.13 mub-1 Good Events: 0 Bad Events: 0
 EM_HI_2EM5_TR = 6098.13 mub-1 Good Events: 0 Bad Events: 0
 EM_HI = 6098.13 mub-1 Good Events: 0 Bad Events: 0
 EM_HI_EMFR8 = 6098.13 mub-1 Good Events: 0 Bad Events: 0
 EM_HI_SH = 6098.13 mub-1 Good Events: 0 Bad Events: 0
 EM_HI_SH_TR = 6098.13 mub-1 Good Events: 0 Bad Events: 0
 EM_HI_TR = 6098.13 mub-1 Good Events: 0 Bad Events: 0
 EM_MX = 6098.13 mub-1 Good Events: 0 Bad Events: 0
 EM_MX_EMFR8 = 6098.13 mub-1 Good Events: 0 Bad Events: 0
 EM_MX_SH = 6098.13 mub-1 Good Events: 0 Bad Events: 0
 EM_MX_TR = 6098.13 mub-1 Good Events: 0 Bad Events: 0
 2EM_HI = 6098.13 mub-1 Good Events: 0 Bad Events: 0

76

Trying it yourself...

Examples are in analysis_tutorial

see next slide

You need tons of additional packages, many of
which are not in the release (or not the right
version in the release).

analysis_tutorial will therefore be never in a
release itself...

But you can use the things described here with
D0ChunkAnalyze or other programs.

77

Package List (Feb 11, 2003)
[...setup your work area...]
% setup d0cvs
% addpkg -h analysis_tutorial
% addpkg emcandidate v00-01-04
% addpkg em_util v00-02-76
% addpkg em_evt v00-15-26
% addpkg emreco v00-12-20
% addpkg hmreco v00-06-13
% addpkg muo_cand p13-br-03
% addpkg jetcorr v04-00-01
% addpkg thumbnail
% addpkg tmb_analyze
% addpkg tmb_tree
% addpkg bc_eTagreco
% addpkg bcjet_evt
% addpkg empartfit
% addpkg linked_physobj
% addpkg lm_access v00-03-02
% addpkg -h lm_access_pkg
% make all

You can go for lunch now...

78

clued0 hack of the day...

The linker that will come with gcc-3.2 is greatly
improved...

Unfortunately it seems to take a few more
releases until we switch...

Before you compile in an older release, do
setenv COMPILER_PATH /usr/local/ld-hack

or in bash
export COMPILER_PATH=/usr/local/ld-hack

This should improve your link times on machines
with less memory, especially when using a test
release with gcc (in one example from 15 minutes
to about 3 mins...)

