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The Higgs MechanismThe Higgs Mechanism

• In the Standard Model 
– Electroweak symmetry breaking 

occurs through introduction of a 
scalar field φ → masses of W and Z

– Higgs field permeates space with 
a finite vacuum expectation value = 246 GeV

– If φ also couples to fermions → generates fermion masses

• An appealing picture: is it correct?
– One clear and testable prediction: there exists a neutral scalar 

particle which is an excitation of the Higgs field
– All its properties (production and decay rates, couplings) are fixed 

except its own mass

Highest priority of worldwide high energy physics program: find it!

W photon
mass = 0

mass = 80.4 GeV
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113 GeV 200 GeV

Searching for the HiggsSearching for the Higgs

• Over the last decade, the focus has been on 
experiments at the LEP e+e– collider at CERN 
– precision measurements of parameters 

of the W and Z bosons, combined with 
Fermilab’s top quark mass measurements, 
set an upper limit of mH ~ 200 GeV 

– direct searches for Higgs production exclude 
mH < 113 GeV

• Summer and Autumn 2000: Hints of a Higgs?
– the LEP data may be giving some indication of a Higgs with mass 

115 GeV (right at the limit of sensitivity)
– despite these hints, CERN management decided to shut off LEP 

operations in order to expedite construction of the LHC

• All eyes on Fermilab: 
– until about 2007, we have the playing field to ourselves
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Higgs at the TevatronHiggs at the Tevatron

• Search for mechanism of EWSB motivated the SSC (and LHC)

• Post-SSC, there was a resurgence of interest in what was possible 
at 2 TeV
– Ideas from within accelerator community (“TeV33”)
– Stange, Marciano and Willenbrock paper 1994
– TeV2000 Workshop November 1994
– Snowmass 1996
– TeV33 committee report to Fermilab director
– Run II Higgs and Supersymmetry Workshop, November 1998

• Consensus resulting from a convergence of
– technical ideas about possible accelerator improvements
– clear physics motivation for integrated luminosities, before LHC 

turn-on, much larger than the (then) approved 2fb-1
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Higgs Higgs Hunting at the Hunting at the TevatronTevatron

• For any given Higgs mass, the production cross section and decays are 
all calculable within the Standard Model

• Inclusive Higgs cross section is 
quite high: ~ 1pb
– for masses below ~ 140 GeV,

the dominant decay is H → bb 
which is swamped by background

– at higher masses, can use inclusive
production plus WW decays

• The best bet below ~ 140 GeV appears 
to be associated production of H plus 
a W or Z
– leptonic decays of W/Z help give 

the needed background rejection
– cross section ~ 0.2 pb

H →bb

H → WW

Dominant decay mode
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mmHH < 140 GeV: H < 140 GeV: H →→bbbb

• WH → qq’bb is the dominant decay mode but is overwhelmed by QCD 
background

• WH → l±ν bb backgrounds Wbb, WZ,tt, single top
• ZH → l+l- bb backgrounds Zbb, ZZ,tt

• ZH → νν bb backgrounds QCD, Zbb, ZZ,tt 
– powerful but requires relatively soft missing ET trigger (~ 35 GeV)

CDF Z →bb in Run I DØ simulation for 2fb-1

2 × 15fb-1 (2 experiments)

mH = 120 GeV

Higgs

Z

bb mass resolution
Directly influences signal significance

Z →bb will be a calibration

~~
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Two b-jets from
Higgs decay

Missing ET

Electron Track

EM cluster

Calorimeter
Towers

p → ←p

pp → WH 
→bb

→ eν

Hits in Silicon Tracker
(for b-tagging)
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Example: Example: mmHH = 115 GeV= 115 GeV

• ~ 2 fb-1/expt (2003): exclude at 95% CL
• ~ 5 fb-1/expt (2004-5): evidence at 3σ level 
• ~ 15 fb-1/expt (2007): expect a 5σ signal

• Events in one experiment with 15 fb-1:

• If we do see something, we will want to test whether it is really a 
Higgs by measuring:
– mass
– production cross section
– Can we see H → WW? (Branching Ratio ~ 9%)
– Can we see H → ττ? (Branching Ratio ~ 8%)

Mode Signal Background S/√B
l νbb 92 450 4.3
ννbb 90 880 3.0
l l bb 10 44 1.5

Every factor of 
two in luminosity

yields a lot 
more physics
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Associated productionAssociated productiontttt + Higgs+ Higgs

• Cross section very low (few fb) 
but signal:background good

• Major background istt + jets

• Signal at the few event level:

H →bb

H → WW

Tests top quark Yukawa coupling 

15fb-1 (one experiment)
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mmHH > 140 GeV> 140 GeV : H : H →→ WWWW((**))

• gg → H → WW(*) → l+l- νν

Backgrounds Drell-Yan, WW, WZ, ZZ, tt, tW, ττ
Initial signal:background ratio ~ 10-2 

– Angular cuts to separate signal from “irreducible” WW background

Before tight cuts:
verify WW modelling

After tight cuts

MC = cluster transverse mass

~~

2 × 15fb-1 

(2 experiments)

Higgs signal

Background 
(mainly WW)
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“that’s where the money is”

15 fb-1

110-190 GeV

mH probability 
density, J. Erler
(hep-ph/0010153)

Combined Higgs mass reachCombined Higgs mass reach



John Womersley

Strong SUSY Strong SUSY Higgs Higgs ProductionProduction

• bb(h/H/A) enhanced at large tan β:

• σ ~ 1 pb for tanβ = 30 
and mh = 130 GeV

tan β = 35

bb(h/A) → 4b

CDF Run I
3 b tags

170 GeV

one
expt
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SUSY SUSY HiggsHiggs sectorsector

Enhances h → γγ ?

95% exclusion 5σ discovery

Exclusion and discovery
for maximal stop mixing,
sparticle masses = 1 TeV

Most challenging scenario:
suppressed couplings to bb 

95% exclusion 5σ discovery

5 fb-1

5 fb-1 15 fb-1 20 fb-1

15 fb-1

20 fb-1

Luminosity per experiment, CDF + DØ combined
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Run 2b significantly extends SUSY reachRun 2b significantly extends SUSY reach

• Major gain comes from chargino/neutralino production in multilepton 
final states:

• Exclusion contours in MSUGRA (A0=0, µ>0) using 3l± final state for 
2, 10, 30 fb-1 
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Excluding SUSYExcluding SUSY

• It is amusing to note that typical minimal supergravity-inspired SUSY  
models are already excluded at the 95% level  
(e.g. Strumia, hep-ph/9904247)

• Run 2b has the capability of covering the rest of the plane, at least to 
first order in model “evasiveness”

LEP limit
Tevatron 

Still allowed
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Detector upgradesDetector upgrades

• The physics drives the luminosity needed
– The Director has set 15 fb-1 as an achievable goal

• Run 2b physics goals require
– jet energy and 

missing ET measurements
– isolated leptons
– b-tagging

• Kinematic range for all objects 
is typically pT > 15 GeV, |η| < 2

Luminosity
Goal  

Accelerator
Upgrades 

(See next talk)

Detector
Upgrades 

Radiation damage 

Occupancy, pattern
recognition, triggering 

η

SUSY trileptons
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Silicon tracker upgradesSilicon tracker upgrades

• Longevity
– the present CDF and DØ trackers will not last more than ~ 4 fb-1

• Both collaborations have decided to build replacement trackers
– avoid long down-time and high risk associated with partial 

replacement

• Primary goals
– retain current capabilities with a more robust and simple system

• helps meet the tight schedule
– use only single-sided silicon
– minimize number of ladder types
– benefit from experience building the present detectors

• Secondary goals
– enhance performance where possible without significant 

additional cost or schedule risk
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LayoutLayout

• Both collaborations propose six layer devices with two groups of
silicon sensor layers

• DØ design for illustration:

3 or 4 outer layers:
Tracking detectors
axial + small angle stereo
pattern recognition and sagitta

2 or 3 inner layers:
Vertexing detectors
axial (+ large angle stereo?)
impact parameter resolution
similar to present CDF L00

16cm
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DØ Tracker Side ViewDØ Tracker Side View

• Outer radius constrained to fit inside existing fiber tracker
• Barrel length (1.2m) governed by desired acceptance

– DØ can install a single unit up to 1.3m long without roll-out
• Inner layer sensors mounted on new 1” diameter beam pipe
• Channel count ~ 500-900k (depends on pitch in outer layers)
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Mechanical engineeringMechanical engineering

• Cooling and support approaches 
are being studied in both experiments

Edge cooling Interior cooling

Sensors mounted 
on support “stave”

DØ outer layers: two cooling variants

CDF outer layers 
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ReadoutReadout

• Maintain existing downstream infrastructure as much as possible
• Both experiments will use the SVX4 chip

– 0.25 µm CMOS technology

– Radiation hard > 30 MRad
– Replaces SVX2 (DØ) and SVX3 (CDF)
– Joint project Fermilab-LBNL-Padova

• Specifications agreed
• SVX2 emulation tested with an SVX3 chip
• Schedule

– Design review at LBNL in April
– Engineering submission this summer
– Production orders in 2002
– Chips available spring 2003

Analog test chip
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OrganizationOrganization

• Both collaborations are putting project management in place

• Laboratory has set up a Task Force to explore and promote
commonalities between the designs 
– obviously good, but . . . 

• First cost and manpower estimates presented at April PAC meeting, 
now being reviewed within the lab
– cost will be of order $10M per detector 

• Technical design reports: Autumn 2001
– some R&D needed: 

• sensor evaluation, prototypes, radiation tests . . .

• Trackers installed and ready for collisions by end of 2004
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DØ Trigger UpgradesDØ Trigger Upgrades

• At 5× 1032cm-2 s-1, the Level 1 trigger rate will exceed the 5-10 kHz 
limit set by deadtime, and the Level 2 trigger rate will exceed the 1.8 
kHz limit set by the calorimeter readout

• Trigger upgrades being simulated and evaluated:
– Calorimeter Level 1 trigger

• Digital signal processing
• Improved energy resolution, jet clustering and EM isolation
• Double granularity of trigger towers in φ (0.2 → 0.1)
• Match tracks and calorimeter objects at L1

– Fiber tracker trigger upgrades (narrower roads, stereo fibers)
– Additional muon trigger scintillator
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Other CDF upgradesOther CDF upgrades

Studies are underway concerning additional possible upgrades:

• deadening of the inner superlayer COT sense wires for large |z| 
• central preshower and crack chamber replacement
• EM calorimeter timing improvements
• Address CSX (muon scintillator) light loss issue
• Stereo segment finder in XFT (level 1 track finder)
• Upgrade event-builder and level 3 farm
• Online system upgrades
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Offline ComputingOffline Computing

• Hardware cost mainly scales with data volume
– run 2b data volume ~ 5 times greater than Run 2a 
– 5-8 petabytes per experiment 

• Computing price/performance evolution: 
– a factor of two every 1.5 years
– factor 8 improvement after 4.5 years

• Therefore costs will be similar to the systems acquired for Run 2
– $9M per experiment in equipment costs
– spending profile best spread over 3 years starting with 2003/4, so 

funds are needed after the bulk of the detector upgrade projects
are finished

• Clearly this is an investment comparable to the detector upgrades, 
and while less “visible” it is just as important to the physics 
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ConclusionsConclusions

• The Tevatron collider program in 
the next 5-7 years offers a real 
opportunity to significantly advance 
our understanding of the fundamental 
properties of space-time and matter

• It is an exciting, challenging program 
that goes straight to the highest priorities 
of high energy physics worldwide 

• The physics case has never been more compelling, and it is of great 
importance politically as well as scientifically

• What worries me most is our ability to execute the program in the 
time available; while it is the highest priority of the laboratory and 
of the experiments, we’ll need adequate resources to carry it out
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Backup slidesBackup slides
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Why not rebuild the existing trackers?Why not rebuild the existing trackers?

A short shutdown is 
critical to our 

Physics Program

Reuse of any part of the 
existing silicon trackers 
would require an estimated 
10-14 months shutdown
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ComplementarityComplementarity with LHCwith LHC

• The Physics goals of the Tevatron upgrade and the LHC are not very 
different, but the discovery reach of the LHC is hugely greater
– SM Higgs:

• Tevatron < 180 GeV  LHC < 1 TeV
– SUSY (squark/gluino masses)

• Tevatron < 400-500 GeV LHC < 2 TeV

Despite its lesser reach, the Tevatron is interesting because 
both Higgs and SUSY “ought to be” light and within reach

• For Standard Model physics, systematics may dominate:
– Top mass precision

• Tevatron ~ 2 GeV LHC ~ 1 GeV? 
– mW precision

• Tevatron ~ 20 MeV? LHC ~ 20 MeV?



John Womersley

Tracker PerformanceTracker Performance

• L0, L5 added to Run 2a GEANT MC (not 
Run 2b geometry)

• Full tracking/pattern recognition
• Simple b-tagging algorithm
• L0 significantly enhances b-tagging 

efficiency at low luminosity
• L5 provides pattern recognition to recover 

efficiency in busy events 

Option σ(d0), µm εb (%)
Minbias0+tt

εb (%)
Minbias6+tt

SMT 25 40 30

SMT+L0 15 47 35

SMT+L0+L5 15 48 40

Impact Parameter (cm)

Run 2b

Run 2a


