SVX4 Peculiarities and Fixes
M. Utes
2/18/3

Figure 1. This is what “incomplete readout” looks like. Only ten to fifteen channels read out even though chips are in read-all mode.

? To avoid incomplete readout, keep Ramp_Rst and Comp_Rst low until readout mode is entered.
? To avoid incomplete readout, avoid glitches in Pri_In at beginning of readout mode.
? To avoid incomplete readout, avoid allowing a rising edge of Preamp Reset in the pipeline that will be digitized.
? Have seen incomplete readout if the previous event was in pipeline-readout-mode for an extended period of time.
? Large charge, slow ramp, slow digitize clock, high counter modulo make the problem worse.
? Preamp reset does not inhibit acquire clocks. The pipeline advances correctly.
? PRD2 needs a clock to reset the reference cell; PRD2 does not inhibit acquire clocks. When refreshing the reference cell, raise PRD2 in-between acquire clocks, wait for a clock and then lower PRD2.
? When entering digitize mode, make sure clocks start before Ramp_Rst goes low.
Enter readout with first chip PRI_IN high; PRI_IN must remain high for 2 clocks under readout high; issue 1st chip PRI_IN low after beclk falling edge—avoid early bus driver enable; emulates correct chip-to-chip operation; avoid corrupted data if 1st chip has only a high-address hit in sparse mode

In contrast to the above entry, we saw that if the falling edge of Priority_In is late at the beginning of Readout mode, the first chip will not read out Channel 127 and its data.

Exit readout before raising PRI_IN—potential for chips to assert OE and DVOE

Change modes only around beclk rising edge, not falling edge—avoids metastable address register

Rd63 --- avoid potential data corruption due to asynchronous condition created in data fifo when read sparse with only a high-address hit (?)

Upward curve in pedestals fixed by making clock under PRD2 wider.

Double reads of channel 7F in sparse mode—slow readout frequency to 48 MHz or set bit to force read of Channel 63.

Zeroes in data -- Need enough digitize clocks to reach data value; otherwise get zero.

Zeroes in data -- PRD2 not present in beam gaps

Bipolar pedestals - - PRD2 not present in beam gaps

Zeroes in data - - PA_RST not present in beam gaps

Bipolar pedestals - - PA_RST not present in beam gaps

Power oscillation at end of readout mode --

Noisy pedestals - - have at least 590ns before falling edge of Ramp_Rst

Cal Inject disappear - - PRD2 edge too near Acquire clock

Initializing chips produces all ones (FFFF) during readback. - - AVX connector on HDI tail could be rotated 180 degrees.

Zeroes in data OR No SVX readout - - Polarity of CLK and /CLK reversed.