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Kazu Hanagaki / Fermilab               
for DØ silicon tracker group

Lessons Learned from                     
the DØ Silicon Micro Strip Tracker

• Design
• Performance
• Operational Problems
• Irradiation Issues
• Summary
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Design

Barrels F-Disks H-Disks
Channels 387072 258048 147456
Modules 432 144 96
Si Area 1.3 m2 0.4 m2 1.3 m2

Inner R 2.7 cm 2.6 cm 9.5 cm
Outer R 9.4 cm 10.5 cm 26 cm

108.1 cm

6 barrels

12 F-disks

4 H-disks

4 super-layers              
in barrel

• L1in, L3in: 
DSDM

• L1out, L3out: 
single sided

• L2, L4: DS
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Module

High Density 
Interconnect (HDI)

• Kapton based flex circuit 
with SVX IIe

• Laminated to beryllium 
substrate, and glued on 
silicon sensor

• Connected to low mass cable 
which carries signal out to 
the interaction region
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Various types 
of detectors 

(all AC 
coupled)

Barrel
3-chip

Barrel
6-chip

F-disk
6-chip

F-disk
8-chip

H-disk
9-chip

n-side

n-side

n-side

p-side

p-side

p-side

144 DSDM
72 Single Sided
50 um pitch 

216 DS 2o stereo

144 DS +/- 15o stereo

50 (p)/153(n) um 

50 (p)/60(n) um 

50 (p)/62.5(n) um 

92x2 SS +/- 7.5o

Elma-Russia

70% Micron-UK, 30% Eurysis-France

Micron-UK

Micron-UK

Micron-UK

Barrel
6-chip

Barrel
9-chip

Barrel
9-chip
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Alignment

• Reasonably well 
aligned
– Only a few µm of 

mis-alignment

residual (µm)

ev
en

ts

unaligned axial residuals

barrels 2-5
pt greater than 3 GeV

width =38.5µm

residual (µm)

ev
en

ts

aligned axial residuals

barrels 2-5
pt greater than 3 GeV

width =20.2µm
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After 
survery 

width=39µm

After 
alignment 

width=20µm
Perfect 

alignment           
in MC : 16µm
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Performance

p-side pulse-height (ADC)

for a MIP
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µ+jet • b-jet tagging 
capability

• B lifetime 
measurement

• More…

Proper decay length (cm)

B0 J/ψK*
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• 85% of channels are healthy
– 9% problems in non accessible part
– 7% unstable

Failure could be 
due to            

either HDI, 
chip, or cable

repair works 
during shutdown • SVXIIe digital power 

unstable when no r/o

resume DAQpause DAQ

HDI failure
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Pedestal Shift

• 3 super-
bunches

• 12 bunches in 
each super-
bunch

• Correlated 
with preamp 
reset, but 
the reason is 
not so clear…

• Resetting 
preamp is 
much faster

• Grounding???

preamp reset
different 
pedestals
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F-disk Noise
example of 
worst case

• This appeared only after a several 
months operation

• Only p-side of fraction of the 
Micron sensor
– Looks like micro-discharge

• Force us to asymmetrically bias the 
sensors

• Charge-up effect, too

300

200

100

20

10

0
Micron sensors Eurysis sensors

Beam 
on

Beam 
on

Beam 
off

Beam 
off
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Ageing
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with temperature 
correction

• Closer the beam, more rapidly the bulk 
current increases with time, as expected
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Irradiation

• Increase of leakage current 
– Increase in shot noise; not the show stopper

• Increase in trapped and surface charges in insulating 
layers
– Lowers threshold for junction breakdown (micro-discharges)
– Helps (!) to increase lifetime limited by micro-discharge on the 

n-side because the trapped positive charge tends to decrease 
the fields at n-p junctions

• Change in effective impurity concentration:
– Remove donors and form acceptors in bulk silicon
– n-type inverts to p-type after about 300 KRads
– Depletion voltage decreases until inversion, 

then increases with dose
• coupling capacitor breakdown 
• micro-discharge actually limits the lifetime
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Irradiation – beam test
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after 2.1 Mrad

• Rapid increase in noise vs bias voltage is typical 
characteristic of micro-discharge (@DSDM n-side)
– Junction is close to n-side after type inversion
– Temperature dependence
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Irradiation – impact

• Lifetime will 
be limited by 
abnormally 
fast reverse 
annealing at 
DSDM sensor

3.6~4.9 fb-1

with large 
(~50%) error

micro-discharge 
threshold

scaled at 
innermost 
layer (L1)
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Addition of Innermost Layer (L0)
• Mitigate tracking losses due 

to radiation damage and HDI 
failure

• Provide more robust pattern 
recognition for higher 
luminosity

• Improve physics reach
– Increase b-tagging

efficiency by 20%
• Benefit from substantial 

investment for run IIb
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Conclusions
• Detector is working well, providing excellent 

physics, despite some operational problems
– 10-15% of channels have problems of HDI

• Mechanism of HDI failure needs to be understood
– F-disk noise

• Using many types of sensors results in 
complications
– Experience of DSDM sensor
– Simpler design is preferred for future

• Micro-discharges of DSDM sensor at Layer 1 
will limit the lifetime
– L0 will be installed inside the Layer 1, which will 

insure functionality through run II
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…backup slides
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CMM Survey
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SVXIIe chip

• 1.2 um CMOS 
amplifier/analog delay/ADC 
chip fabricated in the UTMC 
rad hard process

• Designed by LBL/FNAL
• Some features:

128 channels
32 cell pipeline/channel
8-bit Wilkinson ADCs
Sparsification
53 MHz readout
106 MHz digitization
6.4 x 9.7 mm2

~ 85,000 transistors
noise: 490e + 50e/pF

Pipeline Control Logic

Analog Pipeline

128 channels

32 storage cells/channel
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Readout

~19’-30’ High 
Mass Cable     

(3M/80 conductor)

CathedralCathedral

Interface
Board
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8’ Low Mass 
Cables

3/6/8/9 Chip HDI
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(3M/50 conductor)
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SVX4 Chip
• DZero and CDF (Fermilab and LBL) 

developed new readout chip SVX4
– Successor of SVX2 and SVX3 chip 
– 0.25 µm technology, intrinsically rad-hard 

(>30Mrad) 
– 128 inputs and 46+1 pipeline cells
– 8-bit ADC with sparsification
– 53 MHz readout, 106 MHz digitization
– Programmable test pattern for calibrations, 

ADC ramp, preamp bandwidth 
– Pinhole clamping
– 2.5 V, power measured to 0.3 W/chip

• First version ready in June 2002
– Fully functional chip, used for 

hybrid/module/full readout chain prototyping
• Second version ready in May 2003

– Improved ADC design – good uniformity of 
pedestals

– First test results all positive accepted as a 
final version: 24 wafers ready

– Ready for production signoff completed

9.2mm

Output IO

Pipeline

6.4mm



6/14/2004 5th STD Hiroshima - Kazu Hanagaki 21

SVX4 Chip – continued 
• Noise

– For fixed rise time (69ns): ENC ≅ 300 + 41C             
(2025e- @40pF)

– Spec. < 2000e for 40pF @ 100ns rise time.
very good noise performance.
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Noise of L0

2nd chip no load

One chip

R
M

S 
×

10

Only cable 
bonded

Sensor and 
cable

disabled

capacitive load by cable (0.8ADC~600e)
SVX4 ENC: const+41C  600e indicates C = 15pF for ~45cm

capacitive load by sensor
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Application of Carbon Fiber
• Carbon fiber has high conductivity

• Sensor/analog cable can be                                      
coupled to the support structure                          
capacitively

• Controlling proximity between                                   
detector and support structure is                               
important

1

10

100

1000

1.00E+06 1.00E+07 1.00E+08
Frequency (Hz)

im
pe

da
nc

e 
(o

hm
) Copper

Aluminum

0.014 SS

0.055 SS

0.005 CF

0.011 CF

0.015 CF

0.037 CF

Special 
caution needed 
in grounding 
scheme

Noise vs 
distance 
between analog 
cable and 
ground plane



6/14/2004 5th STD Hiroshima - Kazu Hanagaki 24

Projected Integrated Luminosity

design: challenging (?)
base: conservative
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