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Abstract

The trajectory of a charged particle in the plane transverse to a magnetic field is a
circle in the absence of multiple scattering. For particles which originate near the origin, the
circular path can be written as

o(r) = g-"-lﬂ“-i-(ﬁo (1)

in which ¢ is the azimuthal angle of the point on the track at radius r, b is the distance-
of-closest-approach of the track to the origin, ¢¢ is the angle of the track at the point-of-
closest-approach and x = 1/(2R) is the track curvature. Both b and k are signed. This
form represents an approximation to the circle under the condition kr < 1.0, br < 1.0 and
¢ — o < 1.0. For D@ this approximation holds for |b| < 2 mm and for all relevent transverse
momenta.

This form can be used in a x? minimization to find the parameters of a given charged
particle track. The x? is given in general by
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in which (r;, ¢;) are reconstructed hits in the D@ silicon and fiber tracking detectors and oy,
is the error in ¢. A more convenient form involves not the angular hit resolution, but the
resolution o, measured in the plane approximately perpendicular to the track trajectory. In
this form, o4, = 0,/r;. This form is useful because one needs only two resolution values
ocrr and ogyr for hits from the fiber and silicon detectors respectively ! In this case the
x? becomes (after substituting eqn. 1)
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IFor the most precise results, hit-by-hit resolutions should be used. However, given the initial approxi-
mation, the method used here holds.



The best fit to the track parameters is found by minimizing this x? with respect to b,
and ¢g in the usual manner. Because ¢(r) is linear in the parameters, this can be performed
analytically. Taking the derivative of eqn. 2 with respect to each track parameter gives:
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If we define ¢;; = 17 /0? and ®y; = ¢yl /02, ¢; = ¥; ¢ij and ®; = ¥, ®;; and rearrange terms,
the above equations reduce to the linear system
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This can be solved in the usual manner, giving p = C~1®. For completeness, the inverse is
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with the determinant given by D = cycacq + 2¢1c203 — coci — ¢3 — c?cs. When computing the
inverse only the upper triangular terms are computed, and the lower half is obtained by the
symmetry condition. The resulting track parameters are given by
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and the x? is found by substituting the parameters back into eqn. 2 and rearranging to get
g

X = Z ciolb + (kri + ¢ — ¢z‘)7“z']2 (6)
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1 Alternate Format

The above method for writing the linear equation is the most compact. However, it does not
have the best numerical properties. The elements of the ® vector have different dimensions
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which leads to very different numerical scales for each of the terms in both ® and the inverse
matrix. Because the ® vector is linear in ¢;, the problem can be rewritten with the vector
®' = (¢1, P2, ... on) with N the number of hits. The matrix is then a (nonsymmetric) 3xN
matrix. Let the original inverse matrix be defined as M with elements My;, ¢ = 1,3, j =
1, 3. In terms of this, the elements of the new matrix are

MZI = MiITk/O'f-i-Ming?/o-f +Mz3r]f/0-];}2

with £ = 1, N and N the number of hits used in the fit. The track parameters are found
from p = M'®’ which is simply

b = SpMiéx (7)
¢ = SpMydy (8)
kK = YpMgdy (9)

(10)

with £ =1, N and N as above. The operation count increases by 3z(/N — 3) over the initial
3x3 form, but all terms in a given row of the matrix and all terms in the vector have the
same scale. This significantly reduces the demand for high precision arithmatic. Further, a
track-by-track rotation can be performed, such that at least one of the ¢ = 0, reducing the
number of operations.

Figure 1 shows the diference in impact parameter from a fit performed in a reduced
precision floating point format and a fit using standard double precision floating point.
If a floating point calculation is performed in programmable logic, reduced precision will
be necessary to obtain sufficient performance. One sees clearly the improved numerical
stability of the 3x /N formulation. Such an improvement may also permit the calculation to
be performed using integers, provided the matrix is precomputed and stored in a look up
table.
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Figure 1: Two distributions of the difference in impact parameters resulting from a reduced
precision fit and a standard double-precision fit. The left-hand panel is for a fit performed
using the 3xN form of the linear algebra; the right-hand side is for the 323 form. In both
cases, the reduced precision floating point format has an 18 bit mantissa and a six bit
exponent, and the matrix M was precomputed using full double precision. The superior
numerical stability of the 32V form of the problem is clear.



