* Fermilab
* Engineering Note

To: Muon Electronics group

From: Boris Baldin

CC: Fritz Bartlett, Dmitri Denisov, Tom Diehl, Darien Wood

Date: 02/19/01

Re: Requirements for multi-block transfers using 1553 bus (Updated 02/16/01)

Purpose

This update supersedes all previous versions of this document and contains current requirements for
multi-block data transfers via 1553 bus for muon front-end (FE) electronics systems. The expectation is
that all the limitations of the hardware design of different sub-systems are taken into account in this
update. DO experiment uses the 1553 bus to provide remote controls and monitoring of the detector
electronics.

Hardware

The existing hardware from run | includes 1553 bus cables in the detector area, 1553 bus fan-outs and
1553 control nodes, which are 6U VME crates with VME processor and 1553 bus driver cards. All
muon FEs are equipped with 1553 remote terminal (RT) interface.

Software

DO on-line group uses EPICS software to support communications between on-line hosts and remote
terminals. RT functions in muon FE systems are supported either by the DSP software or by
programmed array logic hardware.

Multi-block data transfers

The main requirement for multi-block transfers comes from a need for muon FEs to store and retrieve
relatively large arrays of data used for setting up hardware and software parameters. The size of the
data arrays varies from a few kilobytes to several megabytes. The multi-block transfers are always
initiated by the host and consisted of a sequence of transmit/receive commands sent to the same sub-
address of the dedicated remote terminal. The RT receives or transmits data in 32 16-bit word units
(maximum allowed by the MIL-1553B standard). The last data transfer in the sequence may have less
than 32 words of data. The RT stores or retrieves data according to the contents of the internal address
and byte count registers, which are previously loaded by a separate 1553 command. Currently, the
EPICS software allows transferring up to 16 KBytes of the data to/from host in one sequence. Unless
newer versions of the EPICS software with larger data buffer size are available, an end user is
responsible for implementation necessary routines in host and RT software to transfer larger data
arrays.

® Page 1

Remote Terminal requirements

® Page 2

1

Each RT must have two dedicated sub-addresses: one for data upload and another for
data download. After the data transfer has been initialized, any multi-block data transfer
commands of the opposite direction must be ignored at the software level until the original
transfer is complete (i.e. byte counter is exhausted). The EPICS software has the ability to
lock up multi-block transfer to serve the same purpose. This feature may only be used with
the series of data transfer commands and will improve reliability of the transmission to
some extent.

Each RT must have one dedicated sub-address for setting up data transfer parameters
and reporting multi-block status. Depending on the value of the T/R bit in the command,
there are six or seven 16-bit words defined with this sub-address. Writing six words to it
will initialize RT’s multi-block logic and set up logical destination address for the data, data
length in bytes and 16-bit checksum word. Reading seven words from this sub-address
provides current multi-block status. The sixth 16-bit word represents multi-block control
word, which describes type of the data transfer (upload or download, see Table | below).
The seventh word contains error bits representing status. After host initialized the data
transfer parameters, the multi-block data transfer commands received by the RT must
correspond to the direction of the data transfer determined by upload/download bits. If a
data transfer of the opposite direction is detected, “multi-block error” bit must be set in the
multi-block status word (see Table I). This bit also must be set if RT detects another
attempt to set up parameters before current multi-block transfer is complete.

Each RT must have one dedicated mode code “reset multi-block mode” in the mode
command to reset RT's multi-block logic. This command is sent before data transfer to
reset the status of RT’s multi-block logic to a default state (see Table | below) and may be
used as an emergency reset..

Two data direction bits and two error bits required to be implemented in two separate 16-
bit registers. The remaining six bits of the lower byte in both 16-bit registers are reserved
and the upper byte bits are user defined. Multi-block transfer status can be checked by
accessing multi-block control word and analyzing data direction bits (non-zero, if in
progress) during the data transfer. Optionally, a RT may have a “multi-block transfer in
progress” bit, which is an OR of two data direction bits. If exists, this bit has to be
implemented in the FE’s status register. If PROM programming follows data downloading,
the RT has to reset download bit only after the programming process is finished. A “multi-
block error” bit will be set to one by the RT logic when an attempt to interfere with the
current transfer occurs or RT detects any unusual status (user defined). The RT will set a
“checksum error” bit if checksum calculation fails at the end of data download. All control
and status bits and data pointers (logical address and byte count) are reset by the “reset
multi-block mode” mode command described earlier. All four control/status bits have
default value of zero.

The logical addressing of the data is user defined, however user must define the data
arrays in such a way that they always consist of the even number of bytes. This
requirement eliminates the need of adding pad byte in multi-block data upload.

There is a minimum time interval (inter-message gap, 4 nS) specified for the RT between
beginning and end of sequential transmit/receive commands. For the software-based
implementation of the 1553 interface, it is important to process data in parallel to avoid
additional dead time in 1553 command response.

The RT must be capable to respond to the other non-multi-block 1553 commands (except
the ones described above) interleaved with multi-block data transfer commands.

Host software requirements

1

Before starting actual data transfer, host software is required to verify that there is no
current data transfer in progress with the selected RT. This has to be done by testing
upload/download status bits in the RT multi-block status word. After the multi-block
parameters are set, host requests the multi-block status word from the RT. If multi-block
error bit is set, the host software must cease communications with the RT and generate an
error message.

An additional data byte has to be added to the data array that has odd number of bytes to
achieve proper 16-bit word data representation required by the EPICS software.

Host software calculates 16-bit checksum value and sends it with “receive multi-block
status” command to the RT before data download starts (see Table | below). Host
software receives checksum using “transmit multi-block status” command at the end of the
data upload and compares it to the calculated checksum.

Host software may request RT to send multi-block status by accessing RT's muti-block
status sub-address (see above) during the data transfer. The only acceptable multi-block
status command during this time is “transmit multi-block status”.

Host software may include some means of preventing simultaneous access to the same
RT from multiple hosts.

Table I. Multi-block data transfer parameters format.

Parameter Datawords Default Receive Transmit Comment
(16 bit) value value value
Destination 2 0 Destination Current Big-Endian byte order,
address address destination | logical address: 0 — illegal,
(logical) address 1..FFFFFFFF - valid
Data byte count 2 0 Data byte | Current byte | Big-Endian byte order, set
(always even) count count to zero when finished,
updated during transfer
Multi-block 1 0 Checksum Current 16-bit checksum, updated
checksum word if download, | checksum | during the data transfer,
zero see paragraph below
otherwise
Multi-block 1 0 Data Current Bit 0 — download, bit 1 —
control word transfer transaction | upload, 2..7 — reserved,
direction status 8..15 — user defined
Multi-block 1 0 N/A Current Bit 0 — checksum error, bit
status word transaction | 1 — multi-block error, 2..7 —
status reserved, 8..15 — user
defined

Multi-block data download sequence

1. The multi-block data download consists of the following 1553 commands:

® Page 3

e

f.

Transmit multi-block status (verify that there is no data transfer in progress)
Reset multi-block logic (set parameters to default)

Receive multi-block status (setup data transfer parameters)

Transmit multi-block status (verify that there is no collision)

Receive data words (download data array)

Transmit multi-block status (send checksum and status to the host)

Notes: During the sequence, the RT must respond to any other 1553 commands that the 1553 driver
may send to it. Some of the multi-block commands may be ignored at the software level. EPICS
software may “lock” the sequence of commands during phase (e).

Multi-block data upload sequence

2. The multi-block data upload consists of the following 1553 commands:

a.

b.

e

f.

Transmit multi-block status (verify that there is no data transfer in progress)
Reset multi-block logic (set parameters to default)

Receive multi-block status (setup data transfer parameters)

Transmit multi-block status (verify that there is no collision)

Transmit data words (upload data array)

Transmit multi-block status (send checksum and status to the host)

Notes: The host does not provide a checksum (sets to zero) when setting up data upload from the RT
during phase (c). During the sequence, the RT must respond to any other 1553 commands
that the 1553 driver may send to it. Some of the multi-block commands may be ignored at the
software level. The RT sends calculated during phase (f) checksum at the end of the data
upload. EPICS software may “lock” the sequence of commands during phase (e).

Checksum calculation

One of the following algorithms must be used to calculate 16-bit checksum value:

1. Addition:

a. Add sequentially 16-bit words with no carry

b.

Invert all bits in the result

2. Subtraction:

a Setinitial value to -1

b. Subtract sequentially 16-bit words with no carry

® Page 4

